• Title/Summary/Keyword: 판내부환경

Search Result 15, Processing Time 0.025 seconds

Initial Evaluation using Geochemical Data to infer Tectonic Setting of Mt. Baekdu/Changbaishan Volcano (백두산 화산의 지체구조 추론을 위한 지구화학적 데이터를 이용한 기초 평가)

  • Yun, Sung-Hyo;Chang, Cheolwoo;Pan, Bo
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.128-139
    • /
    • 2022
  • This study aimed to investigate the tectonic setting of the volcanic edifice at Mt. Baekdu by analyzing petrochemical characteristics of Holocene felsic volcanic rocks distributed in the Baekdusan stratovolcano edifice and summit of the Cheonji caldera rim, as well as Pleistocene mafic rocks of the Gaema lava plateau and Changbaishan shield volcano edifice. During the early eruption phases, mafic eruption materials, with composition ranging from alkali basalt to trachybasalt, or from subalkaline (tholeiitic) basalt to basaltic andesite formed the Gaema lava plateau and Changbaishan shield volcanic edifice, whereas the Baekdusan stratovolcano edifice and Holocene tephra deposits near the summit of the Cheonji caldera comprises trachytic and rhyolitic compositions. Analysis results revealed bimodal compositions with a lack of 54-62 SiO2, between the felsic and mafic volcanic rocks. This suggested that magmatic processes occurred at the locations of extensional tectonic settings in the crust. Mafic volcanic rocks were plotted in the field of within-plate volcanic zones or between within-plate alkaline and tholeiite zones on the tectonic discrimination diagram, and it was in good agreement with the results of the TAS diagram. Felsic volcanic rocks were plotted in the field of within-plate granite tectonic settings on discrimination diagrams of granitic rocks. None of the results were plotted in the field of arc islands or continental margin arcs. The primitive mantle-normalized spider diagram did not show negative (-) anomalies of Nb and Ti, which are distinctive characteristics of subduction-related volcanic rocks, but exhibited similar patterns of ocean island basalt. Trace element compositions showed no evidence of, magmatic processes related to subduction zones, indicating that the magmatic processes forming the Baekdusan volcanic field occurred in an intraplate environment. The distribution of shallow earthquakes in this region supports the results. The volcanic rocks of the Baekdusan volcanic field are interpreted as the result of intraplate volcanism originating from the upwelling of mantle material during the Cenozoic era.

Neoproterozoic A-type Volcanic Activity within the Okcheon Metamorphic Belt (옥천변성대 충주지역의 신원생대 A-형 화산활동)

  • Koh Sang-Mo;Kim Jong-Hwan;Park Kye-Hun
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.3 s.41
    • /
    • pp.157-168
    • /
    • 2005
  • Trachytic rocks among the bimodal metavolcanic rocks of the Gyemyeongsan Formation and adjacent areas are investigated. Some rocks reveal very high content of iron and most rocks show very high abundances of rare earth elements and high field strength elements. Most rocks show significant Eu negative anomaly, which can be interpreted as the result of plagioclase fractionation. Lack of noticeable Nb negative anomaly indicates not-involvement of crustal material in their generation, which excludes the arc environment or remelting of continental crust from their genetic process. Metatrachytes of the Gymyeongsan Formation are plotted within the within-plate environment of the tectonic discrimination diagram utilizing immobile high field strength element Nb and Y. They also show typical characteristics of A-type magma, such as high Ga content. Considering their affinity to Al-type of Eby (1992) and their age of 750 Ma (Lee et al., 1998), they seem to have been produced by the differentiation of mantle-derived within-plate magmatism at the rift, related with the separation of Neoproterozoic supercontinent Rodinia. Possible connection of Gyemyeongsan and Munjuri Formations of the Okcheon metamorphic belt, at least part of them, to the Cathaysia block of South China during the Neoproterozoic is strongly suggested.

Genesis of the acidic metavolcanic rocks distributed around the Chungju iron deposit in the Gyemyeongsan Formation (계명산층 내의 충주 철광상 주변에 분포하는 산성 변성화산암의 성인)

  • Park Maeng-Eon;Kim Gun-Soo;Park Kye-Hun
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.3 s.41
    • /
    • pp.169-179
    • /
    • 2005
  • Acidic metavolcanic rocks distributed around the Chungju iron deposit show significantly high abundances of rare earth elements and high field strength elements. Relatively high ${\epsilon}_{Nd}$(0) values and lack of negative Nb anomaly suggest that assimilation of crustal material is not involved in their generation. They are plotted within the within-plate environment according the tectonic discrimination diagrams. Such geochemical characteristics are very similar to the acidic metavolcanic rocks of Munjuri Formation. They also show geochemical characteristics of Al-type magma of Eby (1992). All such diagnostic characters indicate differentiation of mantle-derived magma produced from the rift environment, related to the breakup of continent. In contrast to the alkali granites and the rare metal deposit both having age of c. 330 Ma, Sm-Nd isotopic data of the acidic metavolcanic rocks do not form well defined isochron. However, the alkali granites reveal low ${\epsilon}_{Nd}$(0) values, while the acidic metavolcanic rocks and the rare metal deposit both have significantly higher ${\epsilon}_{Nd}$(0) values. Considering such differences, we propose following generation hypothesis: The acidic metavolcanic rocks around Chungju iron deposit was erupted at 750 Ma as rest of the acidic metavolcanic rocks of Gyemyeongsan and Munjuri Formations. About 330 Ma ago, partial melting of existing Al-type igneous materials and some old crustal materials produced alkali granite. The rare metal deposit was also produced by redistribution of related materials within the acidic volcanics due to hydrothermal activities occurred at the same time. Sm-Nd isotopic systematics of the acidic metavolcanic rocks were disturbed during the regional metamorphic event at ca. 280 Ma.

보은 지역의 온천 변성염기성암에 대한 암석.지구화학적 연구

  • 권성택;이동호
    • The Journal of the Petrological Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.104-123
    • /
    • 1992
  • We present petrography, mineral chemistry of amphibole and plagioclase, and major and trace element chemistry for the Ogcheon metabasites occurring in the Poun and Mungyong areas to understand metamorphism, and to define chemical characteristics of parental rocks and their implication for tectonic environment. The Ogcheon metabasites often preserve relict igneous textures, although no primary phases are observed. They are mainly composed of amphibole (actinolite+hornblende)+plagioclase+epidote+chlorite+sphene+opaque oxides, indicating epidote amphibolite facies metamorphism. Coarse-grained amphiboles frequently have actinolitic composition in the core, and hornblende along the margin and cleavage, which can be interpreted either as miscibility gap or as result of polymetamorphism. Although presumed polymetamorphic events in the Ogcheon supergroup favor the latter possibility, further metamorphic studies are necessary to solve the problem. Amphibole and plagioclase chemistries suggest greenschist (epidote-amphibolite, if miscibility gap is present) to amphibolite facies metamorphism of possibly medium pressure. The major and trace element data of whole rocks indicate that the Ogcheon metabasites are transitional to tholeiitic basalts belonging to within-plate environment. Absence of evidences indicating deep sea environment suggests that the Ogcheon metabasites emplaced in an intra-cratonic, possibly rift environment which failed to proceed to an oceanic rift. Chemical variation of the metabasites toward a granitic pluton indicates K loss closer to the pluton, suggesting that caution should be taken when K is involved in a discussion.

  • PDF

Geochemistry and Tectonic Implications of Triassic Bojangsan Trachyte in the Southern Margin of the Imjingang Belt, Korea (임진강대 남변부 트라이아스기 보장산조면암의 지구화학과 조구조적 의미)

  • Hwang, Sang Koo;Ahn, Ung San
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.113-125
    • /
    • 2017
  • We investigates geochemical and tectonic characteristics for the Triassic Bojangsan trachyte in the southern margin of the Imjingang belt. The geochemical signatures of the thracyte are characterized by enrichments of REE and HFS, and show no Nb trough, suggesting that would not experience arc magmatic processes involving continental crustal materials. The trachyte reveals within-plate setting in tectonic discrimination diagrams using immobile HFS Nb and Y elements. And the trachyte shows typical signatures of A-type volcanic rocks with high Ga abundance and is classified as A1-type volcanic rocks rich in Nb. The geochemical signatures suggest that the trachyte was produced by the differentiation of mantle-derived magmatism at the continental rift in extensional setting subsequent to a major collision during the Permo-Triassic Songrim orogeny. The results provide robust evodence to consider the Imjingang belt as an extension of the the Qinling-Dabie-Sulu belt between the North and South China blocks.

Composition and Evolution of Lithosphere Beneath the Jeju Island Region (I): A Review (제주도 암석권의 성분과 진화(I): 리뷰)

  • Yang, Kyounghee
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.261-281
    • /
    • 2016
  • Our knowledge of the lithosphere beneath the Korean Peninsula has been improved through petrologic and geochemical studies of upper mantle xenoliths hosted by Quaternary intraplate alkali basalts from Jeju Island. The xenoliths are mostly spinel lherzolites, accompanied by subordinate harzburgite and pyroxenites. The mantle xenoliths represent residual mantle material showing textural and geochemical evidence for at least a three-stage evolution, fractional partial melting, recrystallization, and metasomatism. Their composition primarily controlled by early fractional melt extraction and porphyroclastic and mylonitic fabrics formed in a shear-dominated environment, which was subsequently modified by residual slab-derived fluids (or melts). Modal metasomatic products occur as both anhydrous phase(orthopyroxene) and hydrous phase (phlogopite). Late-stage orthopyroxene is more common than phlogopite. However, chemical equilibrium is evident between the primary and secondary orthopyroxene, implying that the duration of post-metasomatic high temperatures enabled complete resetting/reequilibration of the mineral compositions. The metasomatic enrichment pre-dates the host Jeju Quaternary magmatism, and a genetic relationship with the host magmas is considered unlikely. Following enrichment in the peridotite protolith in the mantle wedge, the upper mantle beneath proto-Jeju Island was transformed from a subarc environment to an intraplate environment. The Jeju peridotites, representing old subarc fragments, were subsequently transported to the surface, incorporated into ascending Quaternary intraplate alkali basalt. The result of this study implies that long term material transfer in the transformation of geotectonic setting from a subarc to intraplate may have played a significant role in the evolution of lithospheric mantle, resulting in the enriched mantle domains, such as EM I or EM II in the lithospheric mantle beneath East Asia.

Petrological Study on Basaltic Rocks of the Daljeon-ri Columnar Joint and the Noeseongsan Noerok Site in Pohang, Korea (포항 달전리 주상절리와 뇌성산 뇌록산지의 현무암 비교 분석)

  • Kim, Jae hwan;Yu, Yeong-wan;Jung, Seung-Ho;Kim, Tae-Hyeong;Moon, Dong Hyeok;Kong, Dal-Yong
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.185-194
    • /
    • 2018
  • The basaltic rocks of Daljeon-ri columnar joint (Natural Monuments # 415) and Noeseongsan Noerok site (Natural Monuments # 547) were analysed in order to understand basalt types of two areas. The basaltic rocks of the Pohang Daljeon-ri columnar joint show a typical porphyritic texture containing phenocrysts (olivine and clinopyroxene) and groundmasses composed of clinopyroxene, plagioclase, and opaque minerals,. In contrast, basaltic rocks of Noeseongsan Noerok are characterized by fine-grained groundmass with large phenocrysts of plagioclase. Other analysis such as magnetic susceptibility, X-ray diffraction and X-ray fluorescence also support the petrological differences of two basalt rocks. The Daljeon-ri basaltic rocks are plotted on phonotephrite volcanic rocks of alkaline series in TAS(total alkali silica), and on within plate basalt in Zr-Ti diagram. The Noeseongsan basalts, on the other hand, are plotted on basaltic andesite to andesite of sub-alkaline series in TAS, and on volcanic arc basalt in Zr-Ti diagram. These results indicate that the original mantle materials between two basalt rocks were different each other, which probably originated from the change of a tectonic setting in the southeastern Korean peninsula during the Miocene.

Geochemistry of the Chuncheon amphibolite and its origin: (1) major elements (춘천 각섬암의 지구화학과 기원:(1) 주성분원소)

  • 권성택;조문섭;전은영;이승렬;이진한
    • The Journal of the Petrological Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.20-30
    • /
    • 1995
  • We report major element chemistry of the Chuncheon amphibolite in the Precambrian Kyonggi massif and discuss its origin. On the basis of areal distribution and chemical difference, the Chuncheon amphibolite can be divided into the Gubongsan arnphibolite in the Gubongsan Group east of Chuncheon city and the Sangguli amphibolite in the Yongduri gneiss complex occurring to the southeast of the Gubongsan Group. Overall major element characteristics of the Chuncheon amphibolite indicate an igneous precursor, although it shows concordant relationship with metasedimentary rocks in many cases. The parental rock of the amphibolite has tholeiitic composition with 45-53wt% $SiO_2$. The Sangguli amphibolite has lower MgO than the Gubongsan one. The difference in $TiO_2$/P_2O_5 ratio between the two amphibolites suggests that they are not genetically related. In MgO variation diagrams, $Na_2O$, $Fe_2O_3$ and $Al_2O_3$ show scattered pattern, while MgO has positive correlation with CaO and negative one with $SiO_2$, $TiO_2$, $P-2O_5$ and $K_2O$. These variations can be interpreted as the result of differentiation of basaltic magma with fractionation of olivine, pyroxene, and plagioclase. Tectonic discrimination using major elements generally suggest withinplate environment for the Chuncheon amphibolite which is similar to that of the amphibolite in the Ogcheon belt.

  • PDF

옥천변성대 북동부(충주-황강리 지역)내 앰피볼라이트의 암석 화학적 고찰

  • 유영복;김형식
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2001.06a
    • /
    • pp.132-132
    • /
    • 2001
  • 옥천변성대의 충주-황강리 지역내 앰피볼라이트의 기원암은 염기성 화성암으로 쏠레이아이트 계열의 변이질암에 속한다. Fe $O^{*}$/MgO값의 변화에 대하여 분별작용에 의해 영향을 받는 주성분 원소와 미량원소들의 변화를 보게되면 Ti $O_2$, Fe $O^{*}$와 불호정성 원소(incompatible element)인 Zr, Nb, Hf, Ta, Th 등은 분별작용동안 증가하는 반면 호정성 원소(compatible element)인 MgO, $Al_2$ $O_3$, Ni, Cr 등은 감소하는 경향을 보여주고 있다. Fe $O^{*}$/MgO, Ti $O_2$ 그리고 Fe $O^{*}$는 심해성 쏠레이아이트 영역으로부터 분화된 경향을 나타내 주고 있다. Ni, Cr은 Fe $O^{*}$/MgO값의 증가에 따라 급속히 감소하며 안정한 대륙과 해저화산의 영역에 도시되고 있으며 칼크-알칼리(CA)와는 관계가 없고 쏠레이아이트의 영역에서 변화 패턴을 보여주어 앰피볼라이트가 활동적인 대륙연변부의 지구조 환경보다는 안정한 대륙이나 해저화산과 관계가 더 있음을 시사한다. 경휘토류 원소(LREE)는 중휘토류 원소(HREE)에 비해 더욱 부화된 특성을 띠고 원자번호가 증가하면서 표준화된 휘토류 원소패턴의 경사가 점차 감소하는 경향을 보여주고 있다. 대부분의 시료들은 큰 Eu이상치를 갖고 있지 않아 마그마 정출 과정동안 사장석의 분별작용이 거의 수반되지 않았음을 지시하고 전체적인 휘토류 원소의 패턴은 거의 평행하게 나타나므로 기원 마그마가 유사함을 의미하고 있다. 비유동성 원소를 이용한 여러 판별도표들을 통해서 본암은 대륙성 현무암질암으로서 판내부 환경에서 유래되었으며 대륙내부 열곡의 알칼리 현무암과 대륙성 현무암 영역에 속하는 것으로 보아서 대륙지각내 열곡작용과 같은 장력운동에 수반되어 생성된 것임을 시사해 주고 있다. 앰피볼라이트의 지각혼성화를 평가하기 위해 이에 필요한 몇 개의 지화학적 매개변수를 계산한 결과 La/Ta, La/Nb, Nb/Th들의 값이 오염 안된 마그마의 값을 지시해 주어 본암이 지각혼성화 작용을 받지 않은 것으로 나타났다. 대부분의 시료들은 P-타입 MORB의 영역에 속하며 소수의 시료가 T-타입 MORB의 영역에 도시되고 있어 본 앰피볼라이트의 생성에는 양적으로 다른 두 가지의 유사한 마그마가 수반된 것으로 추정된다. 것으로 추정된다.

  • PDF

Geochemical Comparison Study on the Amphibolite in the Central Gyeonggi massif and Southeastern Okcheon metamorphic belt (중부 경기육괴와 동남부 옥천변성대의 각섬암에 대한 지화학적 비교 연구)

  • Na Ki Chang;Cheong Won Seok
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.201-213
    • /
    • 2004
  • The Precambrian amphibolites in the central Gyeonggi massif, Yangsuri, Gyeonggido and southeastern Okcheon metamophic belt, Mungyeonggun, Gyeongsangbukdo, Korea, were studied on the geochemical characteristics of major and trace elements, and discussed petrogenetically and geotectonically. The characteristics of major elements of the amphibolites in these study areas are igeous origin such as tholeiitic-, subalkaline and alkaline basalt. Geotectonic distinction diagrams of trace elements such as Ti-Zr-Y and Zr-Nb-Y show basaltic igneous activity of island arc and mid ocean ridge environment at central Gyunggi massif, and within plate environment at southeastern Okcheon metamorphic belt. This result shows that genetic environments of study areas are different. Especially, origin of amphibolites in central Gyeonggi massif is similar with that of western Gyeonggi massif but different with the amphibolites of Chuncheon area. Genetic environment estimated of fractional crystallization of plagioclase has no particular effect on the origin of magma because value of LREE is higher than that of HREE and Eu anomaly definitely don't be exposed.