• Title/Summary/Keyword: 파 중 부유체 운동

Search Result 16, Processing Time 0.021 seconds

해상 부유체 운동특성에 관한 연구

  • Lee, Chun-Gi
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.325-325
    • /
    • 2018
  • 파랑 중 4점 계류식 해상부유체의 운동 특성은 4점 계류의 상태에 따라 운동해석이 달라질 수 있다. 본 연구에서는 부상체의 부력과 파랑의 파고 및 풍압으로 인한 계류색에 미치는 장력에 대하여 검토하고자 한다.

  • PDF

Transient Surge Motion of A Turret Moored Body in Random Waves (불규칙파 중에 Turret 계류된 부유체의 천이운동해석)

  • 김동준
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.2
    • /
    • pp.92-99
    • /
    • 1991
  • A moored body in the sea is subjected to second-order wave forces as well as to linear oscillatory ones. The second-order farces contain slowly-varying components, of which the characteristic frequency can be as low as the natural frequency of horizontal motions of the moored body. As a consequence, the slowly-varying force can excite unexpectedly large horizontal excursion of the body, which may cause a serious damage on the mooring system. In design analysis of Turret-type mooring system which is one of the interesting mooring systems for a floating body. the slowly-varying drift forces and the transient motion of the system during weathervaning are very important. In this paper the slowly-varying drift forces were calculated by using the Quadratic Transfer Function with considering the second order free-wave contributions. Additionaly the transient surge motion of the moored body was simulated with including the roll of the time-memory effect. In this simulation the spring constant of the spread Turret mooring system is updated at every time step for considering the nonlinear effect.

  • PDF

Large Slow-Drift Motions of a Floating Body in Slightly Modulated Waves (해상(海上)에 계류(繫留)된 부유체(浮遊體)의 표류운동(漂流運動) 해석(解析))

  • Dong-J.,Kim;Hang-S.,Choi
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.4
    • /
    • pp.3-14
    • /
    • 1990
  • For a moored body on the sea surface, incident waves with narrow-banded spectra excite the body oscillations of short and long periods. Since the period of slow oscillations can be as long as the natural period of the moored body in horizontal modes, resonance can occur and resulting large motions may cause significant strains in mooring cables. By using the perturbation method of multiple scales, the large slow motion can be analyzed without solving any second-order potentials explicitly. To the leading order, the flows associated with the fast and slow motions interact only parametrically and thus they can be studied separately. It is found that the slow motion strongly depends on the mooring stiffness. In particular, if the moring stiffness is considerably weak compared to the body inertia, the slow motion is highly amplified near resonance. It is also shown that the slow motion is associated with the generation of long waves.

  • PDF

Loads of a Rigid Link Connecting a Container Ship and a Catamaran Type Container Offloading Vessel in Waves (파랑중 컨테이너선과 하역선의 연결장치에 작용하는 하중계산)

  • Hong, Do-Chun;Kim, Yong-Yook;Han, Soon-Hung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.2
    • /
    • pp.83-90
    • /
    • 2010
  • The hydrodynamic interaction of two floating bodies in waves freely floating or connected by a rigid link is studied by using a boundary element method in the frequency-domain. The exact two-body hydrodynamic coefficients of added mass, wave damping and exciting force are calculated from the radiation-diffraction potential solution of the improved Green integral equation associated with the free surface Green function. The irregular frequencies in the conventional Green integral equation make it difficult to predict the physical resonance of the fluid in the gap between two bodies floating side by side. However, the improved Green integral equation employed in this study is free of irregular frequencies and always yields the exact solution of the multi-body radiation-diffraction potential boundary value problem. The 6 degree-of-freedom motions of two bodies freely floating side by side or connected parallel by a rigid link have been calculated for the incident wave frequencies ranging from 0.1 to 5 radians per second in head, left and right bow quartering seas. The 6-component load of the rigid link have also been presented.

Numerical Study on Energy Absorption of a Floater for Design of Wave Energy Convertor in Ocean (해양 파력 발전 시스템 설계를 위한 부유체 에너지 흡수에 관한 기초연구)

  • Li, Kui Ming;Parthasarathy, Nanjundan;Choi, Yoon-Hwan;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.635-644
    • /
    • 2012
  • In order to design a wave energy generating system, a 6-DOF analysis technique is applied to the three-Dimensional CFD analysis on of a floating body and the behavior is interpreted according to the nature of the incoming wave. A wave period of 5.5s & amplitude of 0.57m from Marado is chosen. 12 case of natural pitching period from 1.25 to 2.8s has been modeled. The relation between tuning factor & pitch angle for the waves generated is compared to analyze the effects of energy absorption variables, namely mass moment of inertia, angular velocity and angular acceleration. From the results obtained, we conclude that model L is the maximum power absorbed, 6kW approximately. A maximum pitch angle of 1.91 degree was attained by Model F, and the maximum displacement of nearly 0.7m was attained by Model L among models D, F and L.

A study of motion characteristics along the connection methods between the floating body and the wave energy convertor (파력발전기의 가동부유체와 본체 사이의 연결방식에 따른 운동특성 연구)

  • Kim, Sung-Soo;Lee, Jong-Hyun;Kang, Dong-Hoon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.10a
    • /
    • pp.17-18
    • /
    • 2014
  • Wave energy generation system is sorted as oscillating water chamber type, over topping device type and wave activating body type. The wave activating body type converts from wave energy to kinetic of the machine one and the power generation amount increases while the motion of a activating body increases. In this paper the wave energy convertor consists of a main body which has a generation system and the activating body. They are connected by a bar type bridge. The twisting moment and angular velocity at a shaft of convertor are calculated when various condition of the incident wave, a diversity of connection methods between the main body and the activating body. It can be used as basic idea for determining the design of wave activating body type convertor.

  • PDF

The Nonlinear Motions of Cylinders(II) - Translating and Heaving Problem, Body Motion in Waves - (주상체의 비선형 운동(II) -전진동요문제, 파랑중의 운동-)

  • H.Y. Lee;J.H. Hwang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.1
    • /
    • pp.45-64
    • /
    • 1993
  • This paper dealt with the application of a numerical method developed by the authors using the matching method proposed in the previous paper on "The Nonlinear motions of cylinders(I)[16]", and Cauchy's theorem to the problems associated with hydrodynamic forces acting on a heaving cylinders translating in a calm water and also motions of cylinders in waves. In spectral method. body boundary condition in submerged case is satisfied exactly but one in floating case is not satisfied exactly. In the numerical code developed here, the boundary condition at the free-surface and body surface is satisfied exactly at its instaneous position. It is of interest to note that the present scheme could be applied to a free-surface-piercing body without experiencing a difficulty in the numerical convergence. The computed results are compared with other results([6], [12]).

  • PDF

Time Domain Analysis on Deck Wetness of a Caisson Wet-towed in Irregular Waves (불규칙 파랑 중 직접 예인하는 케이슨의 상판침수에 대한 시간 영역 해석)

  • Heo, Jae-Kyung;Park, Chang-Wook
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.1
    • /
    • pp.27-33
    • /
    • 2016
  • A numerical analysis on deck wetness is carried out for a large caisson directly wet-towed by tugs in irregular waves. A constant panel method is used for linear analysis in frequency domain and a statistical post-processing for the deck wetness is presented. Hydrodynamic coefficients obtained from the frequency domain computation are imported for time domain analysis which enables complete modeling for towing equipment, environment, etc. Both frequency and time domain computations over two sea states are performed and comparison is made. In the time domain analysis, towing systems of various arrangements of tugs are investigated from short-term prediction for the largest deck wetness and the number of occurrences of deck wetness.

A Study on the Floating OWC Chamber Motion in Waves (부유기 OWC 챔버의 파중 운동해석)

  • 홍도천
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.3
    • /
    • pp.19-27
    • /
    • 2002
  • The motion of a floating OWC chamber in waves is studied taking account of fluctuating air pressure in the air chamber. An atmospheric pressure drop occurs across the upper opening of the chamber which causes not only hydrodynamic but also pneumatic added mass and damping forces to the floating chamber. A velocity potential in the water due to the free surface oscillating pressure patch is added to the conventional radiation-diffraction potential problem. the potential problem inside the chamber is formulated by making use of the Green integral equation associated with the Rankine Green function wile the outer problem with the Kelvin Green function. The two integral equations are solved simultaneously by making use of a matching boundary condition at the lower opening of the chamber to the outer water region. The chamber motion in the frequency domain is calculated for various values of parameters related to the atmospheric pressure drop. The present methods can also be sued for the analysis of air-cushion vehicle motion as well as for the design of a floating OWC wave energy absorber.

A Study on the Floating OWC Chamber Motion in Waves (부유식 OWC 챔버의 파중 운동해석)

  • Hong, Do-Chun;Hong, Sa-Young
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.191-197
    • /
    • 2002
  • The motion of a floating OWC chamber in waves is studied taking account of fluctuating.air pressure in the air chamber. An atmospheric pressure drop occurs across the upper opening of the chamber which causes not only hydrodynamic but also pneumatic added mass and damping forces to the floating chamber. A velocity potential in the water due to the free surface oscillating pressure patch is added to the conventional radiation-diffraction potential problem. The potential problem inside the chamber is formulated by making use of the Green integral equation associated with the Rankine Green function while the outer problem with the Kelvin Green function. The two integral equations are solved simultaneously by making use of a matching boundary condition at the lower opening of the chamber to the outer water region. The chamber motion in the frequency domain is calculated for various values of parameters related to the atmospheric pressure drop. The present methods can also be used for the analysis of air-cushion vehicle motion as well as for the design oj a floating owe wave energy absorber.

  • PDF