• Title/Summary/Keyword: 파형강판

Search Result 88, Processing Time 0.025 seconds

Connections of the Corrugated Steel Plate Culvert with the Concrete Box (신설 파형강판 지중암거의 기존 콘크리트 박스 접합부 해석)

  • 조성민;변순주
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.373-378
    • /
    • 2000
  • Zinc galvanized steel plates(sections) of annular corrugations have been used in buried steel culverts. These structures are referred to by a variety of names such as flexible pipes, buried pipes, soil-steel bridges, corrugated steel culverts, and etc. Buried corrugated steel structures show flexible behaviour under the soil load. compared with concrete box structures. Finite element analysis was performed to suggest the reasonable connecting method between the flexible steel culverts and the rigid concrete box. It was predicted that perfectly constrained connections could induce the excessive stress in steel plates. Therefore elastic bearing connections that allow vertical displacement at the connecting point were applied.

  • PDF

Safety Assessment to Construction Position of Constructed Steel Structures under Declinating Earth Pressure (편토압을 받는 파형강판 구조물의 시공위치별 안전성 평가)

  • Lee, Sang-Hyun;Lim, Heui-Dae
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.1
    • /
    • pp.28-34
    • /
    • 2008
  • The corrugated steel plate structures is applied to the construction of mountain tunnel portal part with shallow depth, the tunnel on the outskirts of urban areas and ecology move passage. In this study, A finite element method is used for research the behavior of corrugated steel plate structures due to construction position under declinating earth pressure and excavation depth. A finite element method were performed varying construction position(10, 15, 20 and 25m) from slope and excavation depth from surface. The hoop thrust and moment, displacement of corrugated steel plate subjected to construction position and excavation depth is determined from a finite element method. From results of finite element method, it was found that the increase of thrust and the decrease of displacement as the amount of distance increase from slope with construction position. But the thrust and moment, displacement has not different value with excavation depth.

Shear Buckling Behavior for Trapezoidal Corrugated Webs for Bridges (파형강판 복부의 전단좌굴거동 연구)

  • 이필구;윤태양;이학은;이승록
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.513-520
    • /
    • 2003
  • As a trapezoidal corrugated steel plate has the sufficient stiffness out of plane direction without shear stiffener or thick plate, a use in the web of bridge structure is on the increase. However, there are no domestic design guides for shear buckling strength of corrugated plates. Therefore, foreign design specifications are analyzed about application methods and a numerical parametric study is used to get the relationship of the shear strength and geometric boundary conditions for corrugated plates. Elastic buckling finite element analysis is executed through eigenvalue analysis using the eight nodes five freedoms thin shell element. Parameters such as the width and height of panel and the thickness and height of web, are determined considering the factors to influence on the buckling of corrugated plate. Accuracy of shear buckling analysis is evaluated with theory of foreign buckling equations.

  • PDF

An Application study for corrugated structural plate under the railway (철도하부 통과 구간의 파형강판의 적용성 검토 연구)

  • Roh, Byoung-Kuk;Kim, Hung-Do;Oh, Kyung-Jun
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1424-1430
    • /
    • 2007
  • Corrugated structural plate is ductile structural member which has high sectional properties compared with same thickness of plate. Corrugated plate resists the external forces by the combined action of retained soils and structures. Since it is easy to transport and assemblage of in-situ, the duration and cost of construction can be reduced. Corrugated plate structures, therefore, are widely used in culverts, hydro passages and simple bridges. RC culvert with supported by unstable soil layersin railway construction project of pohang${\sim}$samchuk has been replaced by corrugated plate culvert due to the reduction of construction duration and cost, especially the performance of behavior of settlement of ground. The structural analysis, design processes, and the economic advantages of the corrugated plate culvert are studied in this paper.

  • PDF

Design and Construction of Hybrid Bridge with Corrugated Steel Web by Incremental Launching Method (압출공법에 의한 복부 파형강판 복합교량의 설계 및 시공)

  • Kim Kwang Soo;Jung Kwang Hoe;Sim Chung Wook;Han Jung Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.411-414
    • /
    • 2005
  • This paper presents how to design and construct the Il-sun bridge, the first PSC box girder bridge with Corrugated Steel Web(CSW) in Korea, including 3D analysis results according to construction steps. Also, the 3D analysis for the beams with CSW was performed for the purpose of verifying the role of the flange plate. As the results of this analysis, it is founded that the flange plate plays a role to resist the flexural strength in the nonlinear region. In the near future, we are plan to carry out the load test for these beams with CSW.

  • PDF

Numerical Evaluation of Buckling Strength for High-Strength Corrugated Steel Structures (고강도 원형 지중강판 구조물의 좌굴성능에 대한 수치적 평가)

  • Choi, Dongho;Cho, Sunkyu;Park, Sangil;Moon, Eunkyung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.6
    • /
    • pp.75-88
    • /
    • 2006
  • This paper evaluates the feasibility of use of high-strength steel for soil-metal corrugated steel structures. Two specifications, the AASHTO(2004) and the CHBDC(2000), were compared and the scientific background of equations for the buckling stability in those specifications were investigated to figure out the governing factors for buckling strength of structures. Numerous finite element analyses for round-pipe type of soil-metal corrugated steel structures were carried out with considering the elastic-plastic relationship of a material and the geometrical non-linearity, as well as the various design variables, such as span length, depths of soil cover, section properties, tensile strength and backfill conditions. Buckling strength equation of the CHBDC(2000) is still valid and conservative for both normal and high-strength steel soil-metal corrugated steel structures, and the buckling strength increases with the use of hight-strengths steel.

  • PDF

Structural Behavior of the Buried flexible Conduits in Coastal Roads Under the Live Load (활하중이 작용하는 해안도로 하부 연성지중구조물의 거동 분석)

  • Cho, Sung-Min;Chang, Yong-Chai
    • Journal of Navigation and Port Research
    • /
    • v.26 no.3
    • /
    • pp.323-328
    • /
    • 2002
  • Soil-steel structures have been used for the underpass, or drainage systems in the road embankment. This type of structures sustain external load using the correlations with the steel wall and engineered backfill materials. Buried flexible conduits made of corrugated steel plates for the coastal road was tested under vehicle loading to investigate the effects of live load. Testing conduits was a circular structure with a diameter of 6.25m. Live-load tests were conducted on two sections, one of which an attempt was made to reinforce the soil cover with the two layers of geo-gird. Hoop fiber strains of corrugated plate, normal earth pressures exerted outside the structure, and deformations of structure were instrumented during the tests. This paper describes the measured static and dynamic load responses of structure. Wall thrust by vehicle loads increased mainly at the crown and shoulder part of the conduit. However additional bending moment by vehicle loads was neglectable. The effectiveness of geogrid-reinforced soil cover on reducing hoop thrust is also discussed based on the measurements in two sections of the structure. The maximum thrusts at the section with geogrid-reinforced soil cover was 85-92% of those with un-reinforced soil cover in the static load tests of the circular structure; this confirms the beneficial effect of soil cover reinforcement on reducing the hoop thrust. However, it was revealed that the two layers of geogrid had no effect on reducing the overburden pressure at the crown level of structure. The obtained values of DLA decrease approximately in proportion to the increase in soil cover from 0.9m to 1.5m. These values are about 1.2-1.4 times higher than those specified in CHBDC.

Three-dimensional heat transfer analysis of laser cutting process for CSP 1N sheet using high power CW Nd:YAG laser (고출력 CW Nd:YAG 레이저를 이용한 CSP 1N 냉연강판 절단 공정의 3 차원 열전달 해석)

  • Kim M.S.;Ahn D.G.;Lee S.H.;Yoo Y.T.;Park H.J.;Shin H.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.162-165
    • /
    • 2005
  • The objective of this research work is to investigate into the three-dimensional temperature distribution using quasi steady-state heat transfer analysis fur the case of the laser cutting of CSP 1N sheet using high power CW Nd:YAG laser. The laser heat source is assumed as a volumetric heat source with a gaussian heat distribution in a plane. Through the comparison of the results of analyses with those of the experiments, the optimal finite element model is obtained. Finally, characteristics of the three-dimensional heat transfer and temperature distribution have been estimated by the optimal finite element model.

  • PDF

Effects of process parameters on kerfwidth and characteristics of the cut surface for the case of cutting of CSP 1N sheet using high power continuous wave Nd:YAG laser (고출력 연속파형 Nd:YAG 레이저를 이용한 CSP 1N 박판재 절단시 공정변수가 절단폭 및 절단표면특성에 미치는 영향)

  • Ahn D.G.;Kim M.S.;Lee S.H.;Yoo Y.T.;Park H.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.418-421
    • /
    • 2005
  • The objective of this research work is to investigate the effects of process parameters, such as power of laser, travel speed of laser and material thickness, on kerfwidth and characteristics of the cut surface for the case of cutting of CSP 1N sheet using high power continuous wave Nd:YAG laser. In order to find relationship between the process parameters on the quality of the cut section, such as kerfwidth, surface roughness and the striation formation, several laser cutting experiments are carried out. From the results of experiments, an optimal cutting speed for each cutting condition has been obtained to improve the quality of the cut surface.

  • PDF

The Evaluation of Structural Stability of Corrugated Steel Plate Method applied in High-Speed Railway Vertical Tunnel Structures (고속철도 수직구 터널구조물에 적용된 파형강판공법의 구조적 안정성 검토)

  • Chung, Jee-Seung;Shin, Hwa-Cheol;Kim, Jin-Gu
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.2
    • /
    • pp.64-69
    • /
    • 2016
  • In this paper, structural analysis of High-Speed railway vertical tunnel structures was performed to verify the structural stability. The corrugated steel plate method was applied to the vertical tunnel structures for its simple construction method and low cost. The structural stability of Wall, Connection and Storage section was performed with LRFD and ASD design method at joint part, buckling, stress and plastic hinge. From the results, all of vertical tunnel structures shown the structural stability regardless of design method and structure types. So, the application of corrugated steel plate in vertical tunnel structures instead of cast-in-placed concrete was quite enough.