• Title/Summary/Keyword: 파쇄 과정

Search Result 171, Processing Time 0.021 seconds

Theoretical Background and Design of Hydraulic Fracturing in Oil and Gas Production (석유가스생산을 위한 수압파쇄기술 설계 이론과 실제)

  • Cheon, Dae-Sung;Lee, Tae Jong
    • Tunnel and Underground Space
    • /
    • v.23 no.6
    • /
    • pp.538-546
    • /
    • 2013
  • This paper deals with a hydraulic fracturing technique, which is one of the methods to maximize the recovery rate and productivity of oil and gas in the petroleum industry. In the hydraulic fracturing, typically water mixed with sand and chemicals is injected into a wellbore in order to create artificial fractures along which formation fluids migrate to the well. In recent years, it is widely used in non-conventional oil and gas such as oil shale and shale gas. Three main stages of the hydraulic fracturing process, the proposed design models for the effective hydraulic fracturing and diagnostics after fracturing treatment are introduced. In addition, this paper introduces reservoir geomechanics to solve various problems in the process of hydraulic fracturing.

Measurement of Sounds Radiated of Phantom Piezoelectric Extracorporeal Shock Wave Lithotripter and Their Analysis (체외 충격파 결석 파쇄 장치에 의한 대상물 파쇄시의 발생음의 측정과 해석)

  • Jang, Yun-Seok;Park, Mu-Hun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.6
    • /
    • pp.36-40
    • /
    • 1997
  • The effectiveness of Extracorporeal Shock Wave Lithotripter(ESWL) for the therapy of calculus has been generally known in the field of urology. However, there are very little paper investigated about physical characteristics of sounds radiated when phantom is shotting with shock waves. Therefore, this paper, firstly, investigates the sounds radiated when impact is applied to the phantom with a single shot by an impact hammer and a clinical ESWL Next, it determines the variance of the sounds radiated during the breaking process using a piece of chalk as a phantom of a calculus. These results will be applied to the examination of the existence of the calculus at the focus and the monitoring the breaking process.

  • PDF

Investigation of Fracture Propagation in Cement by Hydraulic Fracturing Under the Tri-axial Stress Condition (시멘트 시료에 대한 삼축압축 환경에서의 수압파쇄시험 연구)

  • Riu, Hee-Sung;Jang, Hyun-Sic;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.233-244
    • /
    • 2017
  • We conducted hydraulic fracturing experiments on cement samples to investigate the dependency of fracture propagation on the viscosity of injection fluid and the in situ stress state. Ten cubic samples (20 cm side length) were produced using cement that was cured in water for more than one month. Samples were placed in a tri-axial compression apparatus with three independent principal stresses. An injection hole was drilled and the sample was hydraulically fractured under a constant injection rate. We measured injection pressures and acoustic emissions (AE) during the experiments, and investigated the fracture patterns produced by hydraulic fracturing. Breakdown pressures increased exponentially with increasing viscosity of the injection fluid. Fracture patterns were dependent on differential stress (i.e., the difference between the major and minor principal stresses). At low differential stress, multiple fractures oriented sub-parallel to the major principal stress axis propagated from the injection hole, and in some samples the fracture orientation changed during propagation. However, at high differential stress, a single fracture propagated parallel to the major principal stress axis. AE results show similar patterns. At low differential stress, AE source locations were more widespread than at high differential stress, consistent with the fracture pattern results. Our study suggests that hydraulic fracturing during shale gas extraction should be performed parallel to the orientation of minimum differential stress.

Influence of Rock Inhomogeneity on the Dynamic Tensile Strength of Rock (암석의 동적 인장강도에 미치는 불균질성의 영향)

  • Cho, Sang-Ho;Yang, Hyung-Sik;Katsuhiko Kaneko
    • Tunnel and Underground Space
    • /
    • v.13 no.3
    • /
    • pp.180-186
    • /
    • 2003
  • The fracture processes under dynamic loading in tension were simulated using a proposed numerical approach and analyzed to determine dynamic tensile strength. The dynamic tensile strength and the scatter of the strength data decreased with increasing uniformity coefficients. The differences of static and dynamic tensile strength were due to the stress concentrations and redistribution mechanisms in the rock specimen. Although there were different mechanisms for the static and dynamic fracture processes, the static and dynamic tensile strengths were close to the mean microscopic tensile strength at high values of the uniformity coefficient. This paper shows that the rock inhomogeneity has an effect on dynamic tensile strength and is a factor that contributes to the different specimen strengths under dynamic and static loading conditions.

Imaging Fractures by using VSP Data on Geothermal Site (지열지대 VSP 자료를 이용한 파쇄대 영상화 연구)

  • Lee, Sang-Min;Byun, Joong-Moo;Song, Ho-Cheol;Park, Kwon-Gyu;Lee, Tae-Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.3
    • /
    • pp.227-233
    • /
    • 2011
  • Attention has been focused on geothermal energy as an alternative energy because it is continuously operable without external supply. Most of geothermal anomalies in Korea are related to deep circulation of groundwater through a fracture system in granite area. Therefore it is very important to understand the distribution of the fracture system which is the main channel of ground water. In this research, we constructed the velocity models with a fracture system and the layered sediments, respectively, and generated synthetic data sets with them to verify the presented vertical seismic profiling (VSP) preprocessing scheme. We compared the results from conventional VSP preprocessing flow to those from VSP preprocessing flow considering fracture system. We noticed that the preprocessing flow considering fracture system retains more sufficient signal including down-going wave than conventional preprocessing. In addition, we applied 3D VSP prestack phase screen migration to the preprocessed reversed VSP (RVSP) data from Seokmo Island so that we were able to image fracture structure of the geothermal site in Seokmo Island.

Vibration Analysis During Breaking Process of Phantom Induced by Shock Wave for Medical Treatment (의료용 충격파에 의할 대상물의 파쇄진행에 따른 진동해석)

  • Park Kyu-Chil;Jang Yun-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.43-48
    • /
    • 2006
  • When the vibration of a phantom induced by Extracorporeal Shock Wave Lithotripter (ESWL) was investigated. we found the fact that the Peak frequency in the Power spectrum shifts from high frequency to low frequency as the number of shots increases[2]. The fact was confirmed experimentally by detecting the peak frequency obtained from the vibrations of bronze models[3]. This Paper investigates the experimental results. For the Purpose. we carried out the computer simulation using the finite element method. It is found that the results from the experiments are computer by computer simulation.

Experimental Study of Breakdown Pressure, Acoustic Emission, and Crack Morphology in Liquid CO2 Fracturing (액체 이산화탄소 파쇄법의 파쇄 압력, 음향 방출, 균열 형상에 관한 실험적 연구)

  • Ha, Seong Jun;Yun, Tae Sup
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.157-171
    • /
    • 2019
  • The fracturing by liquid carbon dioxide ($LCO_2$) as a fracking fluid has been an alternative to mitigate the environmental issues often caused by the conventional hydraulic fracking since it facilitates the fluid permeation owing to its low viscosity. This study presents how $LCO_2$ injection influences the breakdown pressure, acoustic emission, and fracture morphology. Three fracturing fluids such as $LCO_2$, water, and oil are injected with different pressurization rate to the synthetic and porous mortar specimens. Also, the shale which has been a major target formation in conventional fracking practices is also tested to examine the failure characteristics. The results show that $LCO_2$ injection induces more tortuous and undulated fractures, and particularly the larger fractures are developed in cases of shale specimen. On the other hand, the relationship between the fracturing fluids and the breakdown pressure shows opposite tendency in the tests of mortar and shale specimens.

Experimental and Numerical Study on the Dynamic Fracture Processes of PMMA Block by NRC Vapor Pressure Fracture Agent (NRC 증기압 암석 파쇄제에 의한 PMMA 블록의 동적 파괴 과정에 관한 실험 및 수치해석적 연구)

  • Gyeongjo Min
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.1
    • /
    • pp.91-103
    • /
    • 2023
  • This study aims to investigate the dynamic fracture characteristics of rocks and rock-like materials subjected to the Nonex Rock Cracker (NRC), a vapor pressure crushing agent that produces vapor pressure by instantaneously vaporizing a liquid mixture crystallized through the thermite reaction. Furthermore, the study seeks to develop an analytical technique for predicting the fracture pattern. A dynamic fracture test was performed on a PMMA block, an artificial brittle material, using the NRC. High-speed cameras and dynamic pressure gauges were employed to capture the moment of vapor pressure generation and measure the vapor pressure-time history, respectively. The 2-dimensional Dynamic Fracture Process Analysis (2D DFPA) was used to simulate the fracture process caused by the vapor pressure, with the applied pressure determined based on the vapor pressure-time history. The proposed analytical method was used to examine various fracture patterns with respect to granite material and high-performance explosives.

Effective Arrangement of Non-explosive Demolition Agents and Empty Holes for Improving Fragmentation of Square Concrete Structures (정사각형 콘크리트 구조물의 파쇄도 향상을 위한 비폭성 파쇄제와 천공 홀의 효과적인 배치)

  • Cho, Hwangki;Nam, Yunmin;Kim, Kyeongjin;Lee, Jaeha;Sohn, Dongwoo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.2
    • /
    • pp.145-151
    • /
    • 2017
  • As an alternative to conventional explosive methods for demolition of concrete structures and rocks, the use of non-explosive demolition agents can be considered to reduce noise, vibration, and dust emissions during the demolition process. In this study, we conduct finite element analysis for crack initiation and propagation caused by the expansion of non-explosive demolition agents in square concrete structures. The predicted crack patterns are compared with the experimental results in the literature. The minimum values of the required expansion pressure of non-explosive demolition agents are also estimated, which depend upon the arrangement of non-explosive demolition agents and empty holes. Furthermore, we investigate the effect of empty holes on the fragmentation of concrete structures, and discuss the effective arrangement of non-explosive demolition agents and empty holes for fragmentation improvement.

Analysis of In-situ Rock Conditions for Fragmentation Prediction in Bench Blasting (벤치발파에서 파쇄도 예측을 위한 암반조건 분석)

  • 최용근;이정인;이정상;김장순
    • Tunnel and Underground Space
    • /
    • v.14 no.5
    • /
    • pp.353-362
    • /
    • 2004
  • Prediction of fragmentation in bench blasting is one of the most important factors to establish the production plan. It is widely accepted that fragmentation could be accurately predicted using the Kuz-Ram model in bench blasting. Nevertheless, the model has an ambiguous or subjective aspect in evaluating the model parameters such as joint condition, rock strength, density, burden, explosive strength and spacing. This study proposes a new method to evaluate the parameters of Kuz-Ram model, and the predicted mean fragment sizes using the proposed method are examined by comparing the measured sizes in the field. The results show that the predictions using Kuz-Ram model with the proposed method coincide with field measurements, but Kuz-Ram model does not reflect the in-situ rock condition and hence needs to be improved.