• Title/Summary/Keyword: 파쇄형상

Search Result 49, Processing Time 0.025 seconds

Drowning-out Crystallization of Calcium Lactate for Crystal Size Control (결정입자 제어를 위한 젖산칼슘 용석결정화 기술)

  • Kim, Jong-Min;Chang, Sang Mok;Kim, In-Ho;Koo, Yoon-Mo;Hong, Haehyun;Kim, Woo-Sik
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.740-746
    • /
    • 2009
  • In the present study, the drowning-out crystallization of L(+)-calcium lactate was investigated in order to develop the crystallization separation process. The crystallization of the calcium lactate was induced by injecting the alcoholic anti-solvent into the aqueous solution of calcium lactate and the control of the calcium lactate crystal size during the crystallization was primarily investigated under the consideration of the anti-solvent species, anti-solvent composition and agitation speed as the key operating factors. Alcohols of methanol, ethanol, n-propanol and i-propanol were used as the anti-solvent for the drowning-out crystallization. Prior to the crystallization experiment, the solubility of calcium lactate in the water-alcohol mixture was measured along with the variation of the alcohol species and composition, which was necessary to estimate the supersaturation level of the crystallization. By the drowning-out crystallization, the calcium lactate crystals of the fabric shape were obtained. Using the ethanol as the antisolvent, the fabric crystals close to the needle shape were produced. However, the hairy crystals were obtained by using the propanol as the anti-solvent. Due to such morphological features, the crystals was highly apt to form the aggregates. The aggregation of the crystals was intensified as increasing the alcohol fraction in the water-alcohol mixture. Meanwhile, the agitation caused the breakage of crystals, resulting in the decrease of the crystal size. Therefore, the crystal size in the crystallization was predominantly determined by the competition between the crystal aggregation and breakage.

Experimental Evaluation of the Punching Shear Strength with Lightweight Aggregate Concrete Slabs (경량골재 콘크리트 바닥판의 펀칭전단강도의 실험적 평가)

  • Kim, Jung-Joong;Moon, Ji-Ho;Youm, Kwang-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.361-367
    • /
    • 2014
  • This paper investigates the punching shear strength of lightweight aggregate concrete (LWAC) slabs through a series of experimental study. Five full scale slabs were constructed using normal concrete and four different types of LWAC. Each lightweight aggregate (LWA) used in this study had different sources (clay, shale, or slate) and shapes (crushed or spherical shape). Based on the test results, the effect of the lightweight aggregates (LWA) on the punching shear behavior was investigated. From the test results, it was found that the punching shear failure surface of LWAC slab with spherical shape coarse aggregate was less inclined than that with crushed shape coarse aggregate, which resulted in an increase of the area of the shear failure surface. As a result, it leads to the increased punching shear strength of the slab. On the other hand, the failure surfaces of LWAC slab with crushed shape coarse aggregate and normal coarse aggregate were inclined similarly. Finally, the test results of this study were compared with the punching shear strength obtained from current design models, such as ACI and CEB-FIP, to examine the validation of current design model to predict the punching shear strength of the LWAC slab.

Numerical Analysis on Cutting Power of Disc Cutter with Joint Distribution Patterns (절리분포 양상에 따른 디스크커터의 절삭력에 관한 수치해석적 연구)

  • Lee, Seung-Joong;Choi, Sung-O.
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.151-163
    • /
    • 2011
  • The LCM test is one of the most powerful and reliable methods for designing the disc cutter and for predicting the TBM (Tunnel Boring Machine) performance. It has an advantage to predict the actual load on disc cutter from the laboratory test on the real-size large rock samples, however, it also has a disadvantage to transport and/or prepare the large rock samples and to need an extra cost for experiment. Moreover it is not easy to execute the test for jointed rock mass, and sometimes the design model estimated from the test can not be applied to the real design of disc cutter. In order to break this critical point, lots of numerical studies have been performed. PFC2D can simulate crack propagation and rock fragmentation effectively, because it is useful in particle flow analysis. Consequently, in this study, the PFC2D has been adopted for numerical analysis on cutting power of disc cutter according to the different angle of joint, the different direction of joint, and the different space of joint with jointed rock mass models. From the numerical analyses, it was concluded that the bigger cutting power of disc cutter was needed for reverse cutting direction to joint rather than for forward direction, and the cutting power of disc cutter was increased with decreasing the dip angle of joint and decreasing the space of joints in reverse cutting direction. The more precise numerical model for disc cutter can be developed from comparison between the numerical results and LCM test results, and the resonable guideline is expected for prediction of TBM performance and disc cutter.

Properties of Concrete Panel Made by Light Weight Aggregates (인공경량골재로 제조된 콘크리트 패널의 물성)

  • 엄태호;김유택
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.3
    • /
    • pp.221-228
    • /
    • 2004
  • Basic properties of artificial lightweight aggregate by using waste dusts and strength properties of LWA concrete were studied. Bulk specific gravity and water absorption of artificial lightweight aggregates varied from 1.4 to 1.7 and 13 to 16%, respectively. Crushing ratio of artificial lightweight aggregate was above 10% higher than that of crushed stone or gravel. As a result of TCLP leaching test, the leaching amount of tested heavy metal element was below the leaching standard of hazardous material. Slump, compressive strength and stress-strain properties of LWA concrete made of artificial lightweight aggregate were tested. Concrete samples derived from LWA substitution ratio of 30 vol% and W/C ratio of 45 wt% showed the best properties overall. Thermal insulation and sound insulation characteristics of light weight concrete panel with the optimum concrete proportion were tested. Average overall heat transmission of 3.293W/㎡$^{\circ}C$ was observed. It was higher by about 15% than those of normal concrete made by crushed stone. Sound transmission loss of 50.9 ㏈ in frequency of 500 ㎐ was observed. It was higher by about 13% than standard transmission loss.

A numerical study on rock cutting by a TBM disc cutter using SPH code (SPH 코드를 사용한 TBM 디스크커터의 암석 절삭에 대한 수치해석적 연구)

  • Jeong, Ho-Young;Jeon, Seok-Won;Cho, Jung-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.345-356
    • /
    • 2013
  • Numerical simulation on rock cutting by a TBM disc cutter was carried out using SPH (Smoothed Particle Hydrodynamics) code. AUTODYN3D, a commercial software program based on finite element method, was used in this study. The three-dimensional geometry of a disc cutter and a rock specimen were modeled by Lagrange and SPH code respectively. The numerical simulation was carried out for Hwangdeung granite for 10 different cutting conditions. The results of the numerical simulation, i.e. the relation between cutter force and failure behavior, had a good agreement with those from LCM test. The cutter forces measured in the numerical simulation had 10% deviation from the LCM test results. Moreover, the optimum cutter spacing was almost identical with the experimental results. These results indicate that SPH code can be successfully used had applicability for simulation on rock cutting by a TBM disc cutter. However, further study on Lagrange-SPH coupled modelling would be necessary to reduce the computation time.

Stability Analysis of Mine Roadway Using Laboratory Tests and In-situ Rock Mass Classification (실내시험과 현장암반분류를 이용한 광산갱도의 안정성 해석)

  • Kim, Jong Woo;Kim, Min Sik;Lee, Dong Kil;Park, Chan;Jo, Young Do;Park, Sam Gyu
    • Tunnel and Underground Space
    • /
    • v.24 no.3
    • /
    • pp.212-223
    • /
    • 2014
  • In this study, the stability analyses for metal mine roadways at a great depth were performed. In-situ stress measurements using hydrofracturing, numerous laboratory tests for rock cores and GSI & RMR classifications were conducted in order to find the physical properties of both intact rock and in-situ rock mass distributed in the studied metal mine. Through the scenario analysis and probabilistic assessment on the results of rock mass classification, the in-situ ground conditions of mine roadways were divided into the best, the average and the worst cases, respectively. The roadway stabilities corresponding to the respective conditions were assessed by way of the elasto-plastic analysis. In addition, the appropriate roadway shapes and the support patterns were examined through the numerical analyses considering the blast damaged zone around roadway. It was finally shown to be necessary to reduce the radius of roadway roof curvature and/or to install the crown reinforcement in order to enhance the stability of studied mine roadways.

Slope Failure Index System Based on the Behavior Characteristics : SFi-system (거동 특성에 따른 사면 파괴 지수 시스템 : SFi-system)

  • 윤운상;정의진;최재원;김정환;김원영;김춘식
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.2
    • /
    • pp.23-37
    • /
    • 2002
  • Failure of the cut slope is triggered by combination of internal and extemal failure factors. Internal failure factors are related to geological and geometrical conditions of slope itself, and natural and/or artificial loadings on slope can be the external failure factors. Influences of these failure factors show different intensity according to the ground condition and are controlled by behavior characters of the slope. In this study, the soil depth ratio(SR), block size ratio(BR) and rock strength are used as the criteria to divide ground condition based on behavior characteristics. Ground condition of the slope is divided into discontinuous jointed rock mass and continuos soil-like mass, highly fractured rock mass and massive rock mass by the criteria(SR and BR). The SFi-system is a rating system to determine the slope failure index(SFi) by analyzing internal and external factors based on classification of the ground condition. The results of the SFi-system application to the real cut slopes show close relationship between the SFi value and potential or dimension of the failure. Therefore, the SFi-system can be used as a useful tool to predict and analyze the characteristic of the slope failure.

A Study on Particle-Size Distribution and Collect Rate of the Oyster Shells as Breaking and Crushing (파쇄 및 분쇄를 통한 굴 패각의 입도분포와 회수율에 관한 연구)

  • Jung, Ui-In;Kim, Bong-Joo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.458-465
    • /
    • 2017
  • The purpose of the present study was to examine the method of physically processing oyster shells for use as raw material(aggregate) through experimentation. The results of the experiment found that the adequate particle size of the pulverized oyster shells should be smaller than 10mm due to their shape. Also, after considering various particle size distributions and residual rates by particle size, the study found the cutter mill to be the most suitable tool for pulverizing oyster shells. The use of a cutter mill resulted in recovery rates of 97.3%, 98.2%, and 98.9% for inner screens of 8mm, 12mm, and 20mm respectively, revealing how the increase of screen size results in slightly higher recovery rates. The experiment involving the difference between the inner screen of the cutter mill and the speed of the inverter shows that a smaller screen size and a faster inverter speed result in a lower fineness modulus, while a rise in inverter speed for an identical screen made possible the material recovery of a much lower range of particle sizes.

Evaluation of Rainwater Storage Block Using Recycled Aggregate By-product (순환골재 공정부산물을 활용한 빗물저류블록의 성능평가)

  • Kim, Ho-Kyu;Kim, Young-Ahn;Choi, Seung-Yong;Cho, Young-Keun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.3
    • /
    • pp.167-173
    • /
    • 2018
  • In general, calcium is required for the reaction of blast furnace slag fine powder and fly ash. The by-products generated during the process of producing recycled aggregates have different calcium contents depending on the crushing stage and the possibility of using the process by-product as a concrete mixture is also different. In this study, the effect of the calcium content of the by-products on the compressive strength was investigated and the block was fabricated by using this. To utilize the by-products as an admixture, the calcium content was analyzed and the bending strength and surface temperature were measured according to the shape of the water storage block. As a result of this study, the possibility of making a block using recycled aggregate by-products was verified and arch type block was constructed to secure storage capacity and bending strength. Also, the surface temperature of the water storage block was reduced by $9^{\circ}C$ or more than that of the general permeable block.

Characteristics Studies of Waste Tire Rubber Powders using the Different Grinding Methods (분쇄 방식에 따른 폐타이어 고무분말의 특성 연구)

  • Park, Jong-Moon;An, Ju-Young;Bang, Daesuk;Kim, Bong-Seok;Oh, Myung-Hoon
    • Resources Recycling
    • /
    • v.23 no.3
    • /
    • pp.44-50
    • /
    • 2014
  • In this study, a method of shear crushing and a two-stage disk mill were introduced to grind the waste tire powder. Rubber chips with various size were obtained during the crushing or grinding step. The two-stage disk mill was composed of two drum-type blades rotating at various speed and in opposite directions. Therefore, more roughly surfaced particles of micronized waste tire powder were obtained using shear crushing rather than using conventional cutting crushing. In this study, the shape of shear-crushed waste tire particles was compared with conventional cutting crushing particles by scanning electron microscope. In addition, the particle size analyzer was employed to determine the appropriate particle size of waste ground tire powders obtained in this study.