• Title/Summary/Keyword: 파손 거동

Search Result 259, Processing Time 0.023 seconds

A study of estimating the mechanical properties of light-weight composites for automobile (자동차용 경량 복합재료의 기계적 거동예측에 관한 연구)

  • 고병천;최진민;권오건
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.1-8
    • /
    • 1992
  • 본 고에서는 균질화법의 정식화를 이용하여 복합재료의 거시적 균질화된 재료상수를 구하고, 이 재료상수를 이용하여 거시구조물의 변형과 응력을 구하고, 이로부터 다시 미시구조의 응력분포와 변형도를 구하는 방법을 기술하였다. 주기성을 가정한 균질화법은 복합재료 구조물의 물성평가와 거동예측에 대한 매우 적절한 수치해석 방법이다. 균질화법은 이러한 선형변형의 문제뿐만 아니라, 내압을 존재하는 빈공간 소재의 물성, 기지재료와 강화재료 계면의 미끄러짐 등으로 인한 미세 파손현상 등의 예측이 가능하다. 그외에도 탄소성 대변형 거동 이론과 균질화법을 함께 적용하여, squeeze casting에서 발생하기 쉬운 계면분리나 파단 등의 미소결함과 같은 2차 성형성의 예측도 가능하다.

  • PDF

Progressive Failure Analysis of Adhesive Joints of Filament-Wound Composite Pressure Vessel (필라멘트 와인딩 복합재 압력용기의 접착 체결부에 대한 점진적 파손 해석)

  • Kim, Junhwan;Shin, Kwangbok;Hwang, Taekyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1265-1272
    • /
    • 2014
  • This study performed the progressive failure analysis of adhesive joints of a composite pressure vessel with a separated dome by using a cohesive zone model. In order to determine the input parameters of a cohesive element for numerical analysis, the interlaminar fracture toughness values in modes I and II and in the mixed mode for the adhesive joints of the composite pressure vessel were obtained by a material test. All specimens were manufactured by the filament winding method. A mechanical test was performed on adhesively bonded double-lap joints to determine the shear strength of the adhesive joints and verify the reliability of the cohesive zone model for progressive failure analysis. The test results showed that the shear strength of the adhesive joints was 32MPa; the experiment and analysis results had an error of about 4.4%, indicating their relatively good agreement. The progressive failure analysis of a composite pressure vessel with an adhesively bonded dome performed using the cohesive zone model showed that only 5.8% of the total adhesive length was debonded and this debonded length did not affect the structural integrity of the vessel.

Three-Dimensional Poroelastic and Failure Analysis of Composites Using Multislice Finite Element Models (분층형 유한요소 모델을 이용한 복합재료의 삼차원 기공 탄성 및 파손 해석)

  • Yang, Dae Gyu;Lim, Soyoung;Shin, Eui Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.2
    • /
    • pp.92-98
    • /
    • 2017
  • Porosity in polymer matrix composites generated during pyrolysis process affect the thermomechanical behavior of the composites. In this paper, multislice finite element models for the porous composite materials are developed, and poroelastic and failure analysis for these models are performed. In order to investigate the three-dimensional effects, finite element meshes are modeled considering different porosity(up to 0.5) and the number of slices (up to five). As a result, effective Young's moduli and poroelastic parameters exhibit the maximum differences of 74.0% and 442.1% with respect to porosity respectively, and 98.7% and 37.2% with respect to the number of slices. First and last failure strengths are decreased 88.2% and 90.0% with respect to porosity respectively, and 53.8% and 171.8% with respect to the number of slices.

Vibration Fatigue Analysis for Multi-Point Spot-Welded SPCC Structure Considering Change of Dynamic Response (동적응답의 변화를 고려한 점용접부의 진동피로해석)

  • Kang, Ki-Weon;Chang, Il-Joo;Kim, Jung-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1193-1199
    • /
    • 2010
  • Spot welding is the primary method of joining sheet metals in the automotive industry. As automobiles are subjected to fatigue loading, some spot welds may fracture before the whole system has failed. This local fracture of spot welds may lead to change in the dynamic response and consequently affect fatigue behavior of an automobile. Therefore, this change in dynamic response should be taken into consideration to assess the fatigue life of structures subjected to spectrum loading, such as automobiles. In this study, vibration fatigue analysis was performed by taking into consideration the change in the dynamic response due to accumulated damage at spot-welded parts. Fatigue tests were carried out on tensile-shear spot-welded specimens under constant amplitude loading condition. And the fatigue life of spot welds under spectrum loading was predicted using vibration fatigue analysis method based on finite element analysis.

On-Line Monitoring of Microscopic Fracture Behavior of Concrete Using Acoustic Emission (음향방출을 이용한 콘크리트 부재의 미시적 파괴특성의 온라인 모니터링)

  • Lee, Joon-Hyun;Lee, Jin-Kyung;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.1
    • /
    • pp.25-33
    • /
    • 1999
  • Since concrete is an inhomogeneous material consisting of larger aggregates and sand embedded in a cement paste matrix, it relatively shows a complex failure mechanism. In order to assure the reliability of concrete structure. microscopic fracture behavior and internal damage progress of concrete under the loading should be fully understood. In this study, an acoustic emission(AE) technique has been used to clarify microscopic failure mechanism and their corresponding AE signal characteristics of concrete under three-point bending test. In addition 2-dimensional AE source location has been performed to monitor the progress of an internal damage and the successive crack growth behavior during the loading. The relationship between AE signal characteristics and microscopic fracture mechanism is discussed.

  • PDF

Reliability Analysis for Fracture of Concrete Armour Units (콘크리트 피복재의 단면파괴에 대한 신뢰성 해석)

  • 이철응
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.2
    • /
    • pp.86-96
    • /
    • 2003
  • A fracture or breakage of the concrete armor units in the primary cover layer of breakwaters is studied by using the reliability analysis which may be defined as the structural stability. The reliability function can be derived as a function of the angle of rotation that represents the rocking of armor units quantitatively. The relative influences of all of random variables related to the material and geometric properties on the fracture of armor units is analyzed in detail. In addition, the probability of failure for the fracture of individual armor unit can be evaluated as a function of the incident wave height. Finally, Bernoulli random process and the allowable fracture ratio may be introduced together in this paper, by which the probability of failure of a breakwater due to the fracture of armer units can be obtained straightforwardly. It is found that the probability of failure of a breakwater due to the fracture of armor units may be varied with the several allowable fracture ratios. Therefore, it should be necessary to consider the structural stability as well as the hydraulic stability for the design of breakwaters with multi-leg slender concrete armor units of large size under wave action in deep water.

Computational Numerical Analysis and Experimental Validation of the Response of Reinforced Concrete Structures under Internal Explosion (내부폭발 시 철근콘크리트 구조물 거동에 대한 전산수치해석과 실험적 검증)

  • Ji, Hun;Moon, Sei-Hoon;Chong, Jin-Wung;Sung, Seung-Hun;You, Yang-Sun
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.1
    • /
    • pp.101-109
    • /
    • 2018
  • Field experiments as well as numerical analyses with finite element analysis codes are two valuable and complemental ways to understand the structural response under explosive blast load. However, there seems to be only limited information available about finite element analysis and experimental validation on the response of structural components under internal explosions. For complementary use of the two ways, the numerical analyses should be validated with field experiments by comparing their results. In this paper, a small-scaled reinforced concrete building with a room is employed for experimental investigations. An amount of TNT is detonated at the center of the room. Pressure at three different sites in the room, displacement of centers of two walls, and damage patterns of four walls are measured and compared to results from numerical analyses. The experimental results are much similar to the numerical analyses results. The finite element analysis code ANSYS AUTODYN is employed to numerically analyze both pressure distribution inside the room and response of walls subjected to blast pressure. The feasibility and validity of the numerical analysis on the reponses of structural components under internal explosions are discussed in terms of structural damage assessment, and evaluated as the same damage in the analysis and the experiments.

Thermo-mechanical Behavior of WB-PBGA Packages with Pb-Sn Solder and Lead-free Solder Using Moire Interferometry (무아레 간섭계를 이용한 유연 솔더와 무연 솔더 실장 WB-PBGA 패키지의 열-기계적 변형 거동)

  • Lee, Bong-Hee;Kim, Man-Ki;Joo, Jin-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.3
    • /
    • pp.17-26
    • /
    • 2010
  • Pb-Sn solder is rapidly being replaced by lead-free solder for board-level interconnection in microelectronic package assemblies due to the environmental protection requirement. There is a general lack of mechanical reliability information available on the lead-free solder. In this study, thermo-mechanical behaviors of wire-bond plastic ball grid array (WB-PBGA) package assemblies are characterized by high-sensitivity moire interferometry. Experiments are conducted for two types of WB-PBGA packages that have Pb-Sn solder and lead-free solder as joint interconnections. Using real-time moire setup, fringe patterns are recorded and analyzed for several temperatures. Bending deformations of the assemblies and average strains of the solder balls are investigated and compared for the two type of WB-PBGA package assemblies. Results show that shear strain in #3 solder ball located near the chip shadow boundary is dominant for the failure of the package with Pb-Sn solder, while normal strain in #7 most outer solder ball is dominant for that with lead-free solder. It is also shown that the package with lead-free solder has much larger bending deformation and 10% larger maximum effective strain than the package with Pb-Sn solder at same temperature level.

용융물 냉각 및 간극 형성 실험(LAVA)연구

  • 강경호;김종환;조영로;김상백;김희동
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.669-674
    • /
    • 1997
  • LAVA(Lower-plenum Arrested Vessel Attack) 실험은 중대사고시 고온의 노심 용융물이 냉각수가 존재하는 원자로 용기 하부 반구내로 재배치되는 경우 노심 용융물과 하부반구의 열적 거동 모사와 노심용융물과 하부 반구 사이의 구조 분석 및 고화 후의 용융물형상에 대한 관측을 통하여 노심용융물의 자연 냉각 현상을 규명하고자 하는 실험 연구이다. 원자로 용기 하부 반구를 1/8로 선형 축소한 반구형 반응 용기 내부로 $Al_2$O$_3$/Fe Thermite 용융물을 주입하여 용융물과 하부 반구 사이의 구조 및 하부 반구의 열적 거동을 분석하는 실험을 2회 수행하였다. 각각 20, 40kg의 $Al_2$O$_3$/Fe Thermite 용융물을 주입시 킨 LAVA_PRE, LAVA-1 실험 결과 용융물 주입에 따른 하부 반구의 파손은 발생하지 않았으며, 유사한 실험조건에서 수행된 일본 ALPHA실험에 비해서는 하부 반구의 최대 온도가 500 K 이상 높게 측정되었고 냉각율 또한 현저히 낮게 나타났다. 이는 $Al_2$O$_3$/Fe Thermit 용융물중 과열상태의 Fe성분이 하부 반구와 용접되었기 때문으로 판단되며 보다 정확한 하부 반구의 열적거동을 모사하기 위하여 반구 시편에 대한 재료, 조직 검사를 수행하고 있다. 추후의 실험에서는 하부 반구 내외부의 압력 부하에 따른 반응 양상 및 Fe 용융물(금속용융물) 성분을 제거하고 순수한 $Al_2$O$_3$용융물(산화용융물) 만을 주입하여 용융물 성분에 따른 하부 반구의 열적거동을 분선 할 예정이다.

  • PDF

Low-Velocity Impact Response and Damage Analysis of Composite Laminates Under Initial In-plane Loading (초기 면내하중을 받는 복합적층판의 저속충격거동 및 손상해석)

  • Choi, Ik-Hyeon
    • Composites Research
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • In this paper low-velocity impact response and damage of composite laminates is analytically investigated. A modified displacement field of plate considering initially loaded in-plane strain is proposed. From the displacement field a finite element equation on structural behavior of composite laminate is newly induced and a computational program is coded. Numerical results using the FEM code is compared with the numerical ones from reference. Additional numerical analysis is performed on another impact condition and effect of initial in-plane load is reviewed. Potential delamination damage area in the first inter-ply surface from bottom of laminate is approximated and effect of initial in-plane load and impact condition is also reviewed.