• 제목/요약/키워드: 파력발전변환장치

검색결과 34건 처리시간 0.02초

해수소통구를 구비한 진동수주형 파력발전구조물 내에서 공기흐름과 구조물 주변에서 파랑특성에 관한 3차원수치해석(규칙파의 경우) (3-Dimensional Numerical Analysis of Air Flow inside OWC Type WEC Equipped with Channel of Seawater Exchange and Wave Characteristics around Its Structure (in Case of Regular Waves))

  • 이광호;이준형;정익한;김도삼
    • 한국해안·해양공학회논문집
    • /
    • 제30권6호
    • /
    • pp.242-252
    • /
    • 2018
  • 진동수주형의 파력발전구조물(OWC-WEC)는 파랑에너지 흡수장치 중에 가장 효율적인 것으로 알려져 있다. 이 장치는 공기실 내부에서 해수면의 상 하운동을 공기흐름으로 변환하고, Wells 터빈으로 대표되는 터빈의 구동력으로부터 전기에너지가 생산된다. 따라서, 높은 전기에너지를 얻기 위해서는 공기실 내부에서의 수면변동에 피스톤모드의 공진을 유발시켜 수면진동을 증폭시킬 필요가 있다. 본 연구에서는 해수소통구를 구비한 신형식의 OWC-WEC를 상정하고, 구조물에 의한 파랑변형, 공기실 내에서 수면변동과 노즐에서 공기유출속도 및 해수소통구에서 해수흐름속도를 수치해석적으로 상세히 평가한다. 수치해석모델은 Navier-Stokes solver의 혼상류해석기법에 기초한 공개 CFD code인 OLAFLOW 모델을 적용하며, 모델의 타당성을 검증하기 위하여 기존의 실험결과 및 수치해석결과와를 비교 논의한다. 본 연구의 범위 내에서 Ursell수가 커질수록 노즐에서 공기흐름속도가 증가하며, 공기실 내부에서 외부로 유출되는 공기속도가 외부에서 공기실 내부로 유입되는 공기속도보다 더 크다 등의 중요한 사실을 알 수 있었다.

불규칙파중 파랑에너지 변환효율 향상을 위한 래칭 제어전략 (Latching Control Strategy for Improvement Wave Energy Conversion in Irregular Waves)

  • 조일형;김정록;김경환;홍기용
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제18권4호
    • /
    • pp.291-297
    • /
    • 2015
  • 10 MW급의 파력-해상풍력 복합발전 플랫폼 설치해역으로 고려되고 있는 차귀도 해역에서 측정된 파랑정보를 이용하여 파랑스펙트럼을 구하고, 이로부터 생성된 불규칙파에 따라 수직 운동하는 파력발전기에 Sheng et al.(2015)이 제안한 래칭 제어기법을 적용하였다. 래칭 시간을 정할 때 필요한 입사파의 주기로 불규칙파의 통계 대푯값인 피크 주기를 사용하였다. 래칭 제어기법을 불규칙파중 부이의 시간영역 해석에 적용한 결과, 약 50%의 추출파워의 증가를 가져왔다.

파랑 에너지 변환을 위한 월파제어구조물의 월파량 산정 실험 (Experimental Study on Wave Overtopping Rate of Wave Overtopping Control Structure for Wave Energy Conversion)

  • 신승호;홍기용
    • 한국해양공학회지
    • /
    • 제19권6호통권67호
    • /
    • pp.8-15
    • /
    • 2005
  • Wave energy has been considered to be one of the most promising energy resources for the future, as it is pollution-free and an abundant natural resource. However, since it has drawbacks of non-stationary energy density, it is necessary to change the wave energy into a simple concentrated energy. Progressive waves in a coastal area can be amplified, swashed, and overtopped by a wave overtopping control structure. By conserving the quantity of overflow in a reservoir, the kinetic energy of the waves can be converted to the potential energy with a hydraulic head above the mean sea level. The potential energy in the form of a hydraulic head can be utilized to produce electric power, similar to hydro-electric power generation. This study aims to find the most optimal shape of wave overtopping structure for maximum overtopping volume of sea water; for this purpose, we carried out the wave overtopping experiment in a wave tank, under both regular and irregular wave conditions.

일방향 기구 기반 랙-피니언 기어를 이용한 병진형 파력발전장치에 대한 기초연구 (Fundamental Study for Ocean Wave Energy Converter Using a Rack-Pinion Gear Based One-way Mechanism)

  • 이준경;조성일;이세한;이상천;노현철
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.167.1-167.1
    • /
    • 2011
  • Sustainable energy generation is becoming extremely imperative due to the expected limitations in current energy resources and to reduce pollution. Especially, because of its considerable energy potential, ocean wave energy has been investigated with regard to power generation. To develop large high power wave generator system, it is important to make a small scale proto type and to test that. Thus the objective of this research is to examine the characteristics of a mechanically excited generator system having small power capacity experimentally. The water reservoir (4 m length, 1.5 m width and 1.8 m depth) having a wave maker to make arbitrary height and period of the water wave was made. The proto type consists of three main parts; a buoy, rack-pinion base one-way mechanism, and a wave generator(Fig.1). The water wave is going up and down and the hexahedron buoy is following the wave. The rack gear attached to the buoy is also going up and down to roll the pinion connected to an electric generator then it produces electricity. The experiments were performed with several conditions of water waves, and the power outputs over 30 W could be measured for some conditions. In future works, to achieve higher performance for the proto type, the effects of primary parameters (buoy shape and mass, etc.) on the system efficiency will be identified.

  • PDF