DOI QR코드

DOI QR Code

Latching Control Strategy for Improvement Wave Energy Conversion in Irregular Waves

불규칙파중 파랑에너지 변환효율 향상을 위한 래칭 제어전략

  • Cho, Il Hyoung (Department of Ocean System Engineering, Jeju National University) ;
  • Kim, Jeong Rok (Department of Ocean System Engineering, Jeju National University) ;
  • Kim, Kyong-Hwan (Offshore Plant Research Division, Korea Research Institute of Ships & Ocean Engineering) ;
  • Hong, Keyyong (Offshore Plant Research Division, Korea Research Institute of Ships & Ocean Engineering)
  • 조일형 (제주대학교 해양시스템공학과) ;
  • 김정록 (제주대학교 해양시스템공학과) ;
  • 김경환 (한국해양과학기술원 부설 선박해양플랜트연구소, 해양플랜트연구부) ;
  • 홍기용 (한국해양과학기술원 부설 선박해양플랜트연구소, 해양플랜트연구부)
  • Received : 2015.08.28
  • Accepted : 2015.10.21
  • Published : 2015.11.25

Abstract

The wave spectrum was generated from wave data measured at the Chagwi-do site in Jeju, where a 10MW class floating wave-offshore wind hybrid power generation system will be installed. The latching control technology (Sheng et al.[2015]) was applied in order to improve the extracted power from WEC (Wave Energy Converter), which is heaving in corresponding irregular waves. The peak period as a representative value of irregular waves was used when we determined the latching duration. From the numerical results in the time-domain analysis, the latching control technology can significantly improve the extracted power about 50%.

10 MW급의 파력-해상풍력 복합발전 플랫폼 설치해역으로 고려되고 있는 차귀도 해역에서 측정된 파랑정보를 이용하여 파랑스펙트럼을 구하고, 이로부터 생성된 불규칙파에 따라 수직 운동하는 파력발전기에 Sheng et al.(2015)이 제안한 래칭 제어기법을 적용하였다. 래칭 시간을 정할 때 필요한 입사파의 주기로 불규칙파의 통계 대푯값인 피크 주기를 사용하였다. 래칭 제어기법을 불규칙파중 부이의 시간영역 해석에 적용한 결과, 약 50%의 추출파워의 증가를 가져왔다.

Keywords

References

  1. Babarit, A. and Clement, A.H., 2006, "Optimal Latching Control of a Wave Energy Device in Regular and Irregular waves", Appl. Ocean Res., Vol.28, 77-91. https://doi.org/10.1016/j.apor.2006.05.002
  2. Budal, K. and Falnes, J., 1975, "A Resonant Point Absorber of Ocean Wave Power", Nature, Vol.256, 478-479. https://doi.org/10.1038/256478a0
  3. Cho, I.H. and Kweon, H.M., 2011, "Extraction of Wave Energy Using the Coupled Heaving Motion of a Circular Cylinder and Linear Electric Generator", J. Ocean Engineering and Technology, Vol.25, No.6, 9-16. https://doi.org/10.5574/KSOE.2011.25.6.009
  4. Cho, I.H. and Choi, J.Y., 2014, "Design of Wave Energy Extractor with a Linear Electric Generator Part II. Linear Generator", J. Korean Soc. Mar. Environ. Energy, Vol.17, No.3, 174-181. https://doi.org/10.7846/JKOSMEE.2014.17.3.174
  5. Cummins, W., 1962, "The Impulse Response Function and Ship Motions", Schiffstechnik, Vol.9, 101-109.
  6. Falcao, A., 2008, "Phase Control through Load Control of Oscillating- body Wave Energy Converters with Hydraulic PTO System", Ocean Engineering, Vol. 35, 358-366. https://doi.org/10.1016/j.oceaneng.2007.10.005
  7. French, M.J., 1979, "A Generalized View of Resonant Energy Transfer", J. Mech. Engng. Science, Vol.21, 299-300. https://doi.org/10.1243/JMES_JOUR_1979_021_047_02
  8. Falnes, J. and Budal, K., 1978, "Wave-power Conversion by Power Absorbers", Norwegian Maritime Research, Vol.6, 2-11.
  9. Hals, J., Falnes, J. and Moan, T., 2011, "A Comparison of Selected Strategies for Adaptive Control of Wave Energy Converters", J. Offshore Mech. Arct. Eng., Vol.133, 1-12.
  10. Lee, H., Bae, Y.H., Cho, I.H., Kim, K.H. and Hong, K., 2015, "One-way Coupled Dynamic Analysis of Floating Platform with Wave Energy Converters", ISOPE, Kona Hawaii Conference.
  11. Newmark, N.M., 1959, "A Method of Computation for Structural Dynamics", Proceedings of the American Society of Civil Engineers, 67-94.
  12. Sheng, W., Alcorn, R. and Lewis, A., 2015, "On Improving Wave Energy Conversion, part II: Development of Latching Control Technologies", Renewable Energy, Vol.75, 935-944. https://doi.org/10.1016/j.renene.2014.09.049