진화 알고리즘은 여러 개의 상충하는 목적을 갖는 다목적 최적화 문제를 해결하기에 적합한 방법이다. 특히, 파레토 지배관계에 기초하여 개체의 적합도를 평가하는 파레토 기반 진화알고리즘들은 그 성능에 있어서 비교적 우수한 평가를 받고 있다. 그러나 일반화된 다목적 최적화 진화알고리즘은 복잡한 문제들에서 찾아진 해들의 분포가 전체 파레토 경계면에 대하여 균일하지 못하고 특정 지역에서 집중적으로 해를 생성하는 문제점을 가지고 있다. 본 논문에서 우리는 이러한 문제점을 보완하기 위한 다목적 최적화 진화알고리즘을 제안한다. 제안한 알고리즘은 현재까지 찾아진 최적해들 중 특정 지역에 관중되지 않은 해를 우수 종자로 복제 연산에 참여시킨다. 따라서 특별한 지역탐색 기법을 사용하지 않아도 종자가 되는 개체 주위에 새로운 개체를 생성할 확률이 높기 때문에 지역탐색의 효과를 가질 수 있고, 비교적 고른 분포의 파레토 최적 해를 생성한 수 있다. 5개의 테스트 함수에 대한 실험 결과, 제안한 알고리즘은 모든 문제에서 전체 파레토 경계면에 균일한 분포의 해들을 생성할 수 있었으며, 많은 지역해를 가지는 문제를 제외한 모든 문제에서 NSGA-II보다 우수한 수렴 결과를 보였다.
진화 알고리즘은 여러 개의 상충하는 목적을 갖는 다목적 최적화 문제를 해결하기에 적합한 방법이다. 특히, 파레토 지배관계에 기초하여 개체의 적합도를 평가하는 파레토 기반 진화알고리즘들은 그 성능에 있어서 우수한 평가를 받고 있다. 최근의 파레토 기반 진화알고리즘들은 전체 파레토 프론트에 균일하게 분포하는 해집합의 생성을 위해 개체들의 밀도를 개체의 적합도를 평가하기 위한 하나의 요소로 사용하고 있다. 그러나 밀도의 역할은 전체 진화과정에서 중요한 요소가 되기보다는 파레토 프론트에 어느 정도 수렴된 후, 개체의 균일 분포를 만들기 위해 사용된다. 본 논문에서 우리는 파레토 지배 순위와 밀도에 대한 적응적가중치를 이용한 다목적 최적화 진화알고리즘을 제안한다. 제안한 알고리즘은 진화 개체의 적합도를 평가하기위해 파레토 순위와 밀도에 대한 적응적 가중치를 적용하여 전체 진화과정에서 파레토 순위와 밀도가 전체 진화 개체집합의 상태를 고려하여 영향을 미치도록 하였다. 제안한 방법을 많은 지역해들을 포함하는 ZDT4문제에 적용한 결과 비교적 우수한 수렴 결과를 보였다.
다목적 함수의 최적화 문제(Multiobjective optimization problems)의 경우에는 하나의 최적해가 존재하는 것이 아니라 '파레토 최적해 집합(Pareto optimal set)'이라고 알려진 해들의 집합이 존재한다. 이러한 이상적 파레토 최적해 집합과 가까운 최적해를 찾기 위한 다양한 해탐색 능력은 진화 알고리즘의 성능을 결정한다. 본 논문에서는 게임 모텔에 기반한 공진화 알고리즘(GCEA:Game model based Co-Evolutionary Algorithm)에서 해집단의 다양성을 유지하여, 다양한 비지배적 파레토 대안해(non-dominated alternatives)들을 찾기 위한 방법을 제안한다.
다목적 함수의 최적화 문제(Multiobjective optimization problems)의 경우에는 하나의 최적해가 존재하는 것이 아니라 '파레토 최적해 집합(Pareto optimal set)'이라고 알려진 해들의 집합이 존재한다. 이러한 이상적 파레토 최적해 집합과 가까운 최적해를 찾기 위한 다양한 해탐색 능력은 진화 알고리즘의 성능을 결정한다. 본 논문에서는 게임 모델에 기반한 공진화 알고리즘(GCEA: Game model based Co-Evolutionary Algorithm)에서 해집단의 다양성을 유지하여, 다양한 비지배적 파레토 대안해(non-dominated alternatives)들을 찾기 위한 방법을 제안한다.
Journal of the Korean Data and Information Science Society
/
제24권3호
/
pp.495-504
/
2013
진화 알고리즘 계산 지능을 이용한 예측 방법이 다목적 최적화 문제에서 많이 이용되고 있고, 이러한 방법들은 많은 근사 파레토 최적해들을 좀 더 정확하게 생성하기 위해서 개선되고 있다. 본 논문은 다목적 최적화 문제에서 서포트 벡터기계를 이용하여 근사 파레토 프런티어를 찾는 방법을 제안한다. 또한 제안된 방법과 진화 알고리즘을 결합한 것이 파레토 프런티어를 더 잘 근사시킨다는 것과 두 개혹은 세 개의 목적함수를 가진 의사결정은 제안된 방법으로 파레토 프런티어를 시각화한 것에 근거하여 더 쉽게 수행된다는 것을 보인다. 마지막으로 몇 개의 수치예제를 통해 제안된 방법의 효율성에 대해 보일 것이다.
본 연구에서는 부정류 계산모형의 안정적인 매개변수를 선정하기 위하여, 다수 지점의 관측치를 고려한 모형보정의 결과로부터 얻은 파레토 최적화와 최소최대 후회도 방법(minimax regret approach, MRA)을 결합하는 방법을 제안하였다. 여러 지점의 관측치를 고려한 모형의 보정은 다목적 최적화 문제로서, 통합접근법을 적용하여 최적해를 구하였다. 통합접근법은 여러 지점에 대한 가중치를 결합하여 하나의 목적함수를 얻고, 여러 번의 개별 최적화를 수행함으로써 다수의 파레토 최적해들을 구하는 방법이다. 이때 유량에 따른 조도계수의 가변성을 나타내는 두 개의 매개변수로 구성된 관계식을 이용하여 두 구간에 대한 매개변수들을 모형의 추정 대상 매개변수로서 최적화하였다. 이후 각기 다른 홍수사상에 대해 보정과 검증을 수행하였으며 각각에 대한 평가지표의 후회도를 정량화하였고 이를 결합한 결합후회도를 산정하였다. 이를 기준으로 파레토 최적해들의 순위를 결정하였다. 계산결과 추정된 모형의 가변조도계수와 그로부터 얻은 두 개 지점에서의 표준화된 RMSE들은 두 지점에 대한 가중치의 조합에 따라 선택되는 매개변수 값에 따라 달라짐을 알 수 있었다. 본 연구에서 제시한 방법은 수문 및 수리모형의 다수의 관측지점의 자료를 이용한 매개변수 산정문제에 있어서 안정적인 해를 도출할 수 있다.
저수지군 연계운영 문제는 서로 상충되는 목적들이 존재하고, 다양한 평가 기준들이 존재하는 다목적 특성을 갖는 문제이다. 때문에 저수지군 연계운영 문제에 다중목적계획법이 많이 사용되고 있으나 문제의 해결을 위해 사용한 다수의 목적간의 가중치 설정에 의사결정자의 주관적요소가 반영 될 수도 있고, 설정된 가중치에 따라 결과 값이 민감하게 반응하여 의사결정자가 바람직한 가중치 설정에 어려움이 있다. 본 연구의 목적은 다중 목적 특성이 존재하는 저수지군 연계운영 문제에 다요소 의사결정기법 적용하여 바람직한 저수지별 저수 가중치를 선정하는 방법을 제안하는 것이다. 제안하는 저수 가중치 선정 절차는, 우선 GA-CoMOM (Genetic-Algorithm Coordinate Multi-reservoir Operation Model)을 통해 수계 전체 관점에서 저수량과 발전량의 상충되는 목적에 대한 파레토 최적해와 각 최적해에 해당하는 저수지별 저수 가중치를 도출한다. 다음 단계로 다요소 의사결정기법중에 하나인 수정된 거리척도 기반의 DEA 순위 선정 절차를 이용하여 도출된 최적해들의 운영 결과를 평가하여 파레토 최적해군 중에 선호해를 결정하고, 결정된 선호해의 저수지별 저수 가중치를 해당 기간의 저수 가중치로 선정한다. 설명한 선호 가중치 선정 절차를 금강 수계에 적용해 보고 저수지 연계운영에서 바람직한 가중치를 도출할 수 있음을 보인다.
본 논문에서는 최적화 알고리즘의 속도를 향상시킬 수 있는 방안으로 설계자가 원하는 목적함수들의 수렴 범위를 Goal로 설정하여 최적화를 수행하는 GBNSGA(Goal-Pareto based Non-dominated Sorting Genetic Algorithm)를 제안한다. 많은 공학문제들은 하나의 목표치를 충족하는 해를 찾는 것이 아니라 다수 목적함수들을 충족하는 해를 찾는 것이 일반적이다 특히, 이러한 목적함수들은 서로 상충적인 관계를 갖는 경우가 대부분이기 때문에 모든 목적함수들을 만족하는 유일해를 찾는 것은 거의 불가능하다. 그 대안으로 일부 목적을 희생하며 설계에 부합되는 최적해를 찾는 파레토(Pareto) 방식의 최적화 알고리즘들에 대한 많은 연구가 진행되었다. 본 논문에서는 이러한 파레토 기반의 최적화 알고리즘들의 성능 향상을 도모하기 위하여 설계자의 목적을 파레토 할당에 반영하는 GBNSGA를 제안하고, 그 성능을 NSGA와 weighted-sum 접근 방식과의 비교를 통해 그 우수성을 검증하였다.
창업기업은 ICO나 크라우드펀딩 등을 통해 소액주주로부터 자금을 조달하여 캐즘(chasm)을 무사히 통과하게 되면 전문투자기관으로부터 시리즈 투자를 유치하게 된다. 이는 시리즈 단계에서는 창업기업의 불확실성을 줄여주는 전문투자기관이 필요한 반면, 사업의 불확실성이 더 높은 캐즘단계에서는 전문투자기관이 존재하지 않아도 소액투자자들의 모집이 가능하다는 역설이라 할 수 있다. 이러한 역설을 설명하기 위해 본 연구에서는 일반투자자들이 복권형투자(lottery-type investment)에 참여하고 있음을 가정하고, 이에 대한 이론적인 고찰을 시도하였다. 복권형투자는 수익률의 분포가 높은 양의 왜도를 가질 때 이론적으로 가능하다. 사실 경제현상에서 정규분포를 찾아보긴 어렵고 왜도가 높은 파레토분포가 더 일반적이다. 정규분포에 기초한 기존의 가격모델은 오히려 특수해라고 할 수 있다. 기대효용이론에 기초한 복권형투자 모형은 실증분석을 통해 파레토분포의 형상모수(𝛼) 값이 먼저 추정되어야 설계가 가능하다.
분산 환경에서 데이터의 할당(allocation)는 중요한 설계 이슈이다. 데이터의 할당은 분산 데이터에 대한 비용(cost) 감소, 성능(performance) 및 가용성(availability) 향상 등의 이점을 극대화할 수 있도록 최적화되어야 한다. 기존 연구들의 대부분은 트랜잭션의 수행 비용을 최소화하는 방향으로만 최적화된 데이터 할당 결과를 제시하고 있다. 즉, 비용, 성능 및 가용성을 모두 함께 고려하는 연구는 아직까지 제시된 결과가 없으며 이는 복잡한 모델에 대한 적절한 최적화 기법이 없기 때문이다. 본 연구에서는 분산 데이터의 이점들인 비용, 성능 및 가용성 등의 다중측면을 동시에 고려함으로써 데이터 할당에 대한 파레토 최적해를 제공하는 DAMMA (Data Allocation Methodology considering Multiple Aspects) 방법론을 제안하였다. DAMMA 방법론은 데이터 분할 과정을 통하여 생성된 최적의 단편들을 분산 시스템의 운용 비용, 수행 성능, 가용성 등의 요소를 고려하여 각 물리적 사이트에 중복 할당하는 파레토 최적해들을 생성해낼 수 있는 설계 방법론이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.