• 제목/요약/키워드: 파레토해

검색결과 42건 처리시간 0.026초

균일분포의 파레토 최적해 생성을 위한 다목적 최적화 진화 알고리즘 (Evolutionary Multi-Objective Optimization Algorithms for Uniform Distributed Pareto Optimal Solutions)

  • 장수현;윤병주
    • 정보처리학회논문지B
    • /
    • 제11B권7호
    • /
    • pp.841-848
    • /
    • 2004
  • 진화 알고리즘은 여러 개의 상충하는 목적을 갖는 다목적 최적화 문제를 해결하기에 적합한 방법이다. 특히, 파레토 지배관계에 기초하여 개체의 적합도를 평가하는 파레토 기반 진화알고리즘들은 그 성능에 있어서 비교적 우수한 평가를 받고 있다. 그러나 일반화된 다목적 최적화 진화알고리즘은 복잡한 문제들에서 찾아진 해들의 분포가 전체 파레토 경계면에 대하여 균일하지 못하고 특정 지역에서 집중적으로 해를 생성하는 문제점을 가지고 있다. 본 논문에서 우리는 이러한 문제점을 보완하기 위한 다목적 최적화 진화알고리즘을 제안한다. 제안한 알고리즘은 현재까지 찾아진 최적해들 중 특정 지역에 관중되지 않은 해를 우수 종자로 복제 연산에 참여시킨다. 따라서 특별한 지역탐색 기법을 사용하지 않아도 종자가 되는 개체 주위에 새로운 개체를 생성할 확률이 높기 때문에 지역탐색의 효과를 가질 수 있고, 비교적 고른 분포의 파레토 최적 해를 생성한 수 있다. 5개의 테스트 함수에 대한 실험 결과, 제안한 알고리즘은 모든 문제에서 전체 파레토 경계면에 균일한 분포의 해들을 생성할 수 있었으며, 많은 지역해를 가지는 문제를 제외한 모든 문제에서 NSGA-II보다 우수한 수렴 결과를 보였다.

전역 최적해 수렴을 위한 다목적 최적화 진화알고리즘 (Evolutionary Multi-Objective Optimization Algorithms for Converging Global Optimal Solution)

  • 장수현;윤병주
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2004년도 춘계학술발표대회
    • /
    • pp.401-404
    • /
    • 2004
  • 진화 알고리즘은 여러 개의 상충하는 목적을 갖는 다목적 최적화 문제를 해결하기에 적합한 방법이다. 특히, 파레토 지배관계에 기초하여 개체의 적합도를 평가하는 파레토 기반 진화알고리즘들은 그 성능에 있어서 우수한 평가를 받고 있다. 최근의 파레토 기반 진화알고리즘들은 전체 파레토 프론트에 균일하게 분포하는 해집합의 생성을 위해 개체들의 밀도를 개체의 적합도를 평가하기 위한 하나의 요소로 사용하고 있다. 그러나 밀도의 역할은 전체 진화과정에서 중요한 요소가 되기보다는 파레토 프론트에 어느 정도 수렴된 후, 개체의 균일 분포를 만들기 위해 사용된다. 본 논문에서 우리는 파레토 지배 순위와 밀도에 대한 적응적가중치를 이용한 다목적 최적화 진화알고리즘을 제안한다. 제안한 알고리즘은 진화 개체의 적합도를 평가하기위해 파레토 순위와 밀도에 대한 적응적 가중치를 적용하여 전체 진화과정에서 파레토 순위와 밀도가 전체 진화 개체집합의 상태를 고려하여 영향을 미치도록 하였다. 제안한 방법을 많은 지역해들을 포함하는 ZDT4문제에 적용한 결과 비교적 우수한 수렴 결과를 보였다.

  • PDF

다목적 함수 최적화를 위한 게임 모델에 기반한 공진화 알고리즘에서의 해집단의 다양성에 관한 연구 (Study on Diversity of Population in Game model based Co-evolutionary Algorithm for Multiobjective optimization)

  • 이희재;심귀보
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2007년도 추계학술대회 학술발표 논문집
    • /
    • pp.104-107
    • /
    • 2007
  • 다목적 함수의 최적화 문제(Multiobjective optimization problems)의 경우에는 하나의 최적해가 존재하는 것이 아니라 '파레토 최적해 집합(Pareto optimal set)'이라고 알려진 해들의 집합이 존재한다. 이러한 이상적 파레토 최적해 집합과 가까운 최적해를 찾기 위한 다양한 해탐색 능력은 진화 알고리즘의 성능을 결정한다. 본 논문에서는 게임 모텔에 기반한 공진화 알고리즘(GCEA:Game model based Co-Evolutionary Algorithm)에서 해집단의 다양성을 유지하여, 다양한 비지배적 파레토 대안해(non-dominated alternatives)들을 찾기 위한 방법을 제안한다.

  • PDF

다목적 함수 최적화를 위한 게임 모델에 기반한 공진화 알고리즘에서의 해집단의 다양성에 관한 연구 (Study on Diversity of Population in Game model based Co-evolutionary Algorithm for Multiobjective optimization)

  • 이희재;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제17권7호
    • /
    • pp.869-874
    • /
    • 2007
  • 다목적 함수의 최적화 문제(Multiobjective optimization problems)의 경우에는 하나의 최적해가 존재하는 것이 아니라 '파레토 최적해 집합(Pareto optimal set)'이라고 알려진 해들의 집합이 존재한다. 이러한 이상적 파레토 최적해 집합과 가까운 최적해를 찾기 위한 다양한 해탐색 능력은 진화 알고리즘의 성능을 결정한다. 본 논문에서는 게임 모델에 기반한 공진화 알고리즘(GCEA: Game model based Co-Evolutionary Algorithm)에서 해집단의 다양성을 유지하여, 다양한 비지배적 파레토 대안해(non-dominated alternatives)들을 찾기 위한 방법을 제안한다.

기계학습을 이용한 파레토 프런티어의 생성 (Generating of Pareto frontiers using machine learning)

  • 윤예분;정나영;윤민
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권3호
    • /
    • pp.495-504
    • /
    • 2013
  • 진화 알고리즘 계산 지능을 이용한 예측 방법이 다목적 최적화 문제에서 많이 이용되고 있고, 이러한 방법들은 많은 근사 파레토 최적해들을 좀 더 정확하게 생성하기 위해서 개선되고 있다. 본 논문은 다목적 최적화 문제에서 서포트 벡터기계를 이용하여 근사 파레토 프런티어를 찾는 방법을 제안한다. 또한 제안된 방법과 진화 알고리즘을 결합한 것이 파레토 프런티어를 더 잘 근사시킨다는 것과 두 개혹은 세 개의 목적함수를 가진 의사결정은 제안된 방법으로 파레토 프런티어를 시각화한 것에 근거하여 더 쉽게 수행된다는 것을 보인다. 마지막으로 몇 개의 수치예제를 통해 제안된 방법의 효율성에 대해 보일 것이다.

파레토 최적화와 최소최대 후회도 방법을 이용한 부정류 계산모형의 안정적인 매개변수 추정 (Robust parameter set selection of unsteady flow model using Pareto optimums and minimax regret approach)

  • ;정은성;전경수
    • 한국수자원학회논문집
    • /
    • 제50권3호
    • /
    • pp.191-200
    • /
    • 2017
  • 본 연구에서는 부정류 계산모형의 안정적인 매개변수를 선정하기 위하여, 다수 지점의 관측치를 고려한 모형보정의 결과로부터 얻은 파레토 최적화와 최소최대 후회도 방법(minimax regret approach, MRA)을 결합하는 방법을 제안하였다. 여러 지점의 관측치를 고려한 모형의 보정은 다목적 최적화 문제로서, 통합접근법을 적용하여 최적해를 구하였다. 통합접근법은 여러 지점에 대한 가중치를 결합하여 하나의 목적함수를 얻고, 여러 번의 개별 최적화를 수행함으로써 다수의 파레토 최적해들을 구하는 방법이다. 이때 유량에 따른 조도계수의 가변성을 나타내는 두 개의 매개변수로 구성된 관계식을 이용하여 두 구간에 대한 매개변수들을 모형의 추정 대상 매개변수로서 최적화하였다. 이후 각기 다른 홍수사상에 대해 보정과 검증을 수행하였으며 각각에 대한 평가지표의 후회도를 정량화하였고 이를 결합한 결합후회도를 산정하였다. 이를 기준으로 파레토 최적해들의 순위를 결정하였다. 계산결과 추정된 모형의 가변조도계수와 그로부터 얻은 두 개 지점에서의 표준화된 RMSE들은 두 지점에 대한 가중치의 조합에 따라 선택되는 매개변수 값에 따라 달라짐을 알 수 있었다. 본 연구에서 제시한 방법은 수문 및 수리모형의 다수의 관측지점의 자료를 이용한 매개변수 산정문제에 있어서 안정적인 해를 도출할 수 있다.

DEA기반 순위결정 절차를 활용한 저수지군 연계운영 (Coordinated Multiple Reservoir Operation Using a DEA-based Ranking Procedure)

  • 전승목;김승권
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2007년도 학술발표회 논문집
    • /
    • pp.2089-2093
    • /
    • 2007
  • 저수지군 연계운영 문제는 서로 상충되는 목적들이 존재하고, 다양한 평가 기준들이 존재하는 다목적 특성을 갖는 문제이다. 때문에 저수지군 연계운영 문제에 다중목적계획법이 많이 사용되고 있으나 문제의 해결을 위해 사용한 다수의 목적간의 가중치 설정에 의사결정자의 주관적요소가 반영 될 수도 있고, 설정된 가중치에 따라 결과 값이 민감하게 반응하여 의사결정자가 바람직한 가중치 설정에 어려움이 있다. 본 연구의 목적은 다중 목적 특성이 존재하는 저수지군 연계운영 문제에 다요소 의사결정기법 적용하여 바람직한 저수지별 저수 가중치를 선정하는 방법을 제안하는 것이다. 제안하는 저수 가중치 선정 절차는, 우선 GA-CoMOM (Genetic-Algorithm Coordinate Multi-reservoir Operation Model)을 통해 수계 전체 관점에서 저수량과 발전량의 상충되는 목적에 대한 파레토 최적해와 각 최적해에 해당하는 저수지별 저수 가중치를 도출한다. 다음 단계로 다요소 의사결정기법중에 하나인 수정된 거리척도 기반의 DEA 순위 선정 절차를 이용하여 도출된 최적해들의 운영 결과를 평가하여 파레토 최적해군 중에 선호해를 결정하고, 결정된 선호해의 저수지별 저수 가중치를 해당 기간의 저수 가중치로 선정한다. 설명한 선호 가중치 선정 절차를 금강 수계에 적용해 보고 저수지 연계운영에서 바람직한 가중치를 도출할 수 있음을 보인다.

  • PDF

Goal-Pareto 기반의 NSGA 최적화 알고리즘 (Goal-Pareto based NSGA Optimization Algorithm)

  • 박준수;박순규;신요안;유명식;이원철
    • 대한전자공학회논문지SP
    • /
    • 제44권2호
    • /
    • pp.108-115
    • /
    • 2007
  • 본 논문에서는 최적화 알고리즘의 속도를 향상시킬 수 있는 방안으로 설계자가 원하는 목적함수들의 수렴 범위를 Goal로 설정하여 최적화를 수행하는 GBNSGA(Goal-Pareto based Non-dominated Sorting Genetic Algorithm)를 제안한다. 많은 공학문제들은 하나의 목표치를 충족하는 해를 찾는 것이 아니라 다수 목적함수들을 충족하는 해를 찾는 것이 일반적이다 특히, 이러한 목적함수들은 서로 상충적인 관계를 갖는 경우가 대부분이기 때문에 모든 목적함수들을 만족하는 유일해를 찾는 것은 거의 불가능하다. 그 대안으로 일부 목적을 희생하며 설계에 부합되는 최적해를 찾는 파레토(Pareto) 방식의 최적화 알고리즘들에 대한 많은 연구가 진행되었다. 본 논문에서는 이러한 파레토 기반의 최적화 알고리즘들의 성능 향상을 도모하기 위하여 설계자의 목적을 파레토 할당에 반영하는 GBNSGA를 제안하고, 그 성능을 NSGA와 weighted-sum 접근 방식과의 비교를 통해 그 우수성을 검증하였다.

복권형 투자

  • 강원
    • 한국벤처창업학회:학술대회논문집
    • /
    • 한국벤처창업학회 2022년도 추계학술대회
    • /
    • pp.237-240
    • /
    • 2022
  • 창업기업은 ICO나 크라우드펀딩 등을 통해 소액주주로부터 자금을 조달하여 캐즘(chasm)을 무사히 통과하게 되면 전문투자기관으로부터 시리즈 투자를 유치하게 된다. 이는 시리즈 단계에서는 창업기업의 불확실성을 줄여주는 전문투자기관이 필요한 반면, 사업의 불확실성이 더 높은 캐즘단계에서는 전문투자기관이 존재하지 않아도 소액투자자들의 모집이 가능하다는 역설이라 할 수 있다. 이러한 역설을 설명하기 위해 본 연구에서는 일반투자자들이 복권형투자(lottery-type investment)에 참여하고 있음을 가정하고, 이에 대한 이론적인 고찰을 시도하였다. 복권형투자는 수익률의 분포가 높은 양의 왜도를 가질 때 이론적으로 가능하다. 사실 경제현상에서 정규분포를 찾아보긴 어렵고 왜도가 높은 파레토분포가 더 일반적이다. 정규분포에 기초한 기존의 가격모델은 오히려 특수해라고 할 수 있다. 기대효용이론에 기초한 복권형투자 모형은 실증분석을 통해 파레토분포의 형상모수(𝛼) 값이 먼저 추정되어야 설계가 가능하다.

  • PDF

유전자 알고리즘을 이용한 분산 데이터베이스 할당 방법론 (An Allocation Methodology on Distributed Databases Using the Genetic Algorithmsplications)

  • 박성진;박화규;손주찬;박상봉;백두권
    • 정보기술과데이타베이스저널
    • /
    • 제5권1호
    • /
    • pp.1-12
    • /
    • 1998
  • 분산 환경에서 데이터의 할당(allocation)는 중요한 설계 이슈이다. 데이터의 할당은 분산 데이터에 대한 비용(cost) 감소, 성능(performance) 및 가용성(availability) 향상 등의 이점을 극대화할 수 있도록 최적화되어야 한다. 기존 연구들의 대부분은 트랜잭션의 수행 비용을 최소화하는 방향으로만 최적화된 데이터 할당 결과를 제시하고 있다. 즉, 비용, 성능 및 가용성을 모두 함께 고려하는 연구는 아직까지 제시된 결과가 없으며 이는 복잡한 모델에 대한 적절한 최적화 기법이 없기 때문이다. 본 연구에서는 분산 데이터의 이점들인 비용, 성능 및 가용성 등의 다중측면을 동시에 고려함으로써 데이터 할당에 대한 파레토 최적해를 제공하는 DAMMA (Data Allocation Methodology considering Multiple Aspects) 방법론을 제안하였다. DAMMA 방법론은 데이터 분할 과정을 통하여 생성된 최적의 단편들을 분산 시스템의 운용 비용, 수행 성능, 가용성 등의 요소를 고려하여 각 물리적 사이트에 중복 할당하는 파레토 최적해들을 생성해낼 수 있는 설계 방법론이다.

  • PDF