• Title/Summary/Keyword: 파단기준

Search Result 129, Processing Time 0.025 seconds

A Study on the Effective Length Factor for Steel Plate-Concrete Structures using Cementless Concrete (무시멘트 콘크리트를 활용한 강판콘크리트 구조의 유효좌굴길이 계수 분석에 관한 연구)

  • Han, Myoung-Hwan;Choi, Byong-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.661-671
    • /
    • 2018
  • Domestic studies on steel plate concrete structures have focused on nuclear structures with high strength. In this study, the SC structure was applied to the general structure, and the SC structure that is advantageous in terms of safety and construction was limited to a special structure. As a basic study for applying SC, this paper proposes basic design information of a SC structure applying cement concrete to plan the structure, which is suitable for eco - friendliness by replacing concrete cement, an important factor in a SC structure, with blast furnace slag. This study examined the compression characteristics and the effective length factor under central compression load. To calculate the effective length factor, the Euler column theory was applied without applying plate theory. The effective length factor was calculated from the yield strength of the steel plate, buckling of the steel plate, and the point at which the concrete was broken. In addition, this study examined whether the maximum compressive strength meets the national and international reference equations with the slenderness ratio (B/t) as a parameter. By analyzing the buckling of the specimen by applying the column theory and selecting the strain of the measured steel plate, the effective length factor was analyzed and compared with the value presented in the reference equation.

Structural Performance of Joints for Partial Reinforced Beam Using GFRP Laminated Plate and Cylindrical Reinforced LVL Column (GFRP적층판을 활용한 보강보부재와 원통형 단판적층기둥재 접합부의 내력 성능평가)

  • Song, Yo-Jin;Jung, Hong-Ju;Lee, Jung-Jae;Suh, Jin-Suk;Park, Sang-Bum;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.282-289
    • /
    • 2014
  • After being laminated with a combination of glass fiber reinforced plastic and plywood, the GFRP laminated plate was densificated for 1 hour at $150^{\circ}C$ with pressure of $1.96N/mm^2$. A partial reinforced beam was produced by attaching the 5 GFRP laminated plates to the joint of glulam and the column. In addition, the column to beam joint was produced by using reinforced laminated wooden pin which was made of GFRP sheet and plywood, fiber glass reinforced cylindrical-LVL column. The joint was made of round log, glulam and drift pin as the reference specimen, and its moment resistance was evaluated. As a result, the strength performance of specimens with partial reinforced beams were 1.8 times stronger than the reference specimen on average. Furthermore, rupture was neither occurred on partial reinforced beam nor column. Toughness and stiffness of joints were also fine. The GFRP sheet reinforced laminated plate showed better reinforcement effect than GFRP textile reinforced one. GFRP sheet was inserted into each layer of laminate, and it showed good condition in rotation-angle and strength, therefore it is the most appropriate to reinforce the part of the beam.

Strength and Deformation Capacities of Short Concrete Columns with Circular Section Confined by GFRP (GFRP로 구속된 원형단면 콘크리트 단주의 강도 및 변형 능력)

  • Cho, Soon-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.121-130
    • /
    • 2007
  • To investigate the enhancement in strength and deformation capacities of concrete confined by FRP composites, tests under axial loads were carried out on three groups of thirty six short columns in circular section with diverse GFRP confining reinforcement. The major test variables considered include fiber content or orientation, wrap or tube type by varying the end loading condition, and continuous or discontinuous confinement depending on the presence of vortical spices between its two halves. The circumferential FRP strains at failure for different types of confinements were also investigated with emphasis. Various analytical models capable of predicting the ultimate strength and strain of the confined concrete were examined by comparing to observed results. Tests results showed that FRP wraps or tubes provide the substantial increase in strength and deformation, while partial wraps comprising the vertical discontinuities fail in an explosive manner with less increase in strength, particularly in deformation. A bilinear stress-strain response was observed throughout all tests with some variations of strain hardening. The failure hoop strains measured on the FRP surface were less than those obtained from the tensile coupons in all tests with a high degree of variation. In overall, existing predictive equations overestimated ultimate strengths and strains observed in present tests, with a much larger scatter related to the latter. For more accuracy, two simple design- oriented equations correlated with present tests are proposed. The strength equation was derived using the Mohr-Coulomb failure criterion, whereas the strain equation was based on entirely fitting of test data including the unconfined concrete strength as one of governing factors.

Experimental Investigation on Seismic Performance of RC Circular Columns Strengthened Using Highly-Ductile PET-AF Fiber Strand (고연성 PET-AF 스트랜드로 외부 보강한 RC 원형 기둥의 내진 성능에 관한 실험적 연구)

  • Chinzorigt, Gombosuren;Kim, So-Young;Choi, Donguk;Lim, Myung-Kwan;Lee, Chin-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.56-66
    • /
    • 2017
  • In this study, seismic strengthening performance of RC circular columns reinforced with high ductile PET and hybridized fibers(HF, PET + aramid) strand was experimentally compared and investigated. As a result, the maximum flexural strength and ductility capacity of all reinforced columns were improved than control column and fiber rupture did not occur at the ultimate stage. In addition, the resistive strength and displacement of the PET sheet 25 layers reinforcing column and the HF strand 1 layer reinforcing column were almost similar, so that 1 layer of HF strand showed the same lateral confinement effect as the PET sheet 25 layers. As a result of this experimental study, PET is considered to be suitable as seismic reinforcement material for RC structures in terms of flexural strength and ductility. However, in order to increase the possibility of application in the field, it is necessary to use a prefabricated PET sheet such as HF used in this study. The durability of PET needs investigation in the future.

Cyclic Loading Test for TSC Beam - PSRC Column Connections (TSC 합성보 - PSRC 합성기둥 접합부에 대한 주기하중 실험)

  • Hwang, Hyeon Jong;Eom, Tae Sung;Park, Hong Gun;Lee, Chang Nam;Kim, Hyoung Seop
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.6
    • /
    • pp.601-612
    • /
    • 2013
  • In the present study, details of the TSC beam-to-PSRC column connection for low and middle seismic zones were developed. For ease construction, the top and bottom flanges of the steel section of the TSC beam were discontinuous at the joint face on purpose, while the web passes through the joint. Thus, tensile resistance of the top and bottom flanges is not considered in the calculation of nominal strength of the connection. Cyclic loading tests on two interior connections and an exterior connection were performed to verify the seismic performance. The test parameter for two interior connections was the depth of the TSC beams: 600 and 700 mm including the slab depth. The test results showed that the nominal strength of the connections predicted by KBC 2009 correlated well with the test results. The connection specimens exhibited relatively good deformation and energy dissipation capacities, greater than the requirements for the ordinary and intermediate moment frames. Ultimately, the connection specimens were failed at the story drift ratios of 3.0 to 4.0 % due to local buckling and tensile fracture of the web of the TSC beam passing through the joint. By modifying the existing provisions of ASCE, the joint shear strength of the TSC beam-PSRC column connection was evaluated.

A Study on Stability and Economic feasibility according to Height on the MSE Wall with Pacing Panel (고속도로 도로부에 시공된 패널식 보강토 옹벽의 높이별 안전율과 경제성 검토)

  • Park, Min-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.54-63
    • /
    • 2018
  • In this study, the stability and economic feasibility of a MSE (Mechanically stability earth) wall with a pre-cast concrete pacing panel was investigated for a standard section of highway. Based on the design criteria, the MSE walls of the panel type were designed considering the load conditions of the highway, such as the dead load of the concrete pavement, traffic load, and impact load of the barrier. The length of the ribbed metal strip was arranged at 0.9H according to the height of the MSE walls. Because the length of the reinforcement was set to 0.9H according to the height of the MSE wall, the external stability governed by the shape of the reinforced soil was not affected by the height increase. The factor of safety (FOS) for the bearing capacity was decreased drastically due to the increase in self-weight according to the height of the MSE wall. As a result of examining the internal stability according to the cohesive gravity method, the FOS of pullout was increased and the FOS of fracture was decreased. As the height of the MSEW wall increases, the horizontal earth pressure acting as an active force and the vertical earth pressure acting as a resistance force are increased together, so that the FOS of the pullout is increased. Because the long-term allowable tensile force of the ribbed metal strip is constant, the FOS of the fracture is decreased by only an increase in the horizontal earth pressure according to the height. The panel type MSE wall was more economical than the block type at all heights. Compared to the concrete retaining wall, it has excellent economic efficiency at a height of 5.0 m or more.

Strength Performance Evaluation of Threaded Nail Joints of Wooden Retaining Wall Using Pitch Pine (Pinus rigida Miller) Square Timber (리기다 소나무 정각재를 사용한 목재옹벽의 직결나사못 접합부 내력 성능 평가)

  • Song, Yo-Jin;Kim, Keon-Ho;Lee, Dong-Heub;Hwang, Won-Joung;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.53-59
    • /
    • 2011
  • A connection was made between a single stretcher and 2 headers with 2 threaded nails (Type-A), and another one between 2 stretchers and 2 headers with 4 threaded nails (Type-B) to use as specimens. Type-C was the stretchers that are connected with 2 threaded nails by half lap joint at end-distance 5D to reinforce Type-B, Type-C1 the stretchers that are connected by half lap joint at end-distance 10D, and Type-C2 with 3 threaded nails at end-distance 10D. Compressive shear strength of Type-C, the supplementation of Type-B, was decreased by 30%, compared with that of Type-B. Those of Type-B and Type-C1 that used longer end-distance than Type-C were about the same, and that of Type-C2 connected with 3 threaded nails was 1.28-times stronger than that of Type-C1. Connection of the retaining wall using existing square timber has a problem between long and short stretchers and 2 headers. So it was investigated in the experiment to replace it. Therefore, if Type-B is replaced with Type-C2 in constructing the retaining wall, the crack and the rupture of timber caused by threaded nail as well as construction period can be reduced, and also it can be expected to increase their own strength.

Evaluation of Tensile Behaviors of Beam Splice with High Strength Bolts According to Steel Grades (강종에 따른 고력볼트 보 이음부 인장거동 평가)

  • Kim, Hee-Dong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.129-137
    • /
    • 2020
  • In designing a high strength bolted beam splice using steel for building structures, it is necessary to present the appropriate steel grade selection criteria for how to determine the cover plate steel grade. This study examined the difference in tensile behavior according to the steel grades through static tensile tests simulating the beam member high strength bolt joints flange. For this purpose, the specimens were designed and fabricated with the main variables, such as the thickness, steel grade and the strength of flange and cover plate, which are expected to affect the splice strength and behavior. The tensile test results for a total of 48 specimens showed that the tensile-load capacity exceeded the design tensile strength applied with a nominal strength of steel in all specimens. When the design strength of the cover plate exceeded 1.25 times that of the flange plate, the flange plate governed the behavior of splice. The change in maximum tensile load due to the change in flange steel grade is not very large, but there is a difference in deformation. The test results confirmed that the steel grade and thickness of the cover plate were the main factors affecting the beam splice behavior.

Studies on the Bio-degradability and Characteristics of Mulching Films Containing Rice By-products Applied to Upland Crops (벼 부산물을 함유한 생분해성 멀칭비닐의 포장 재배조건에서의 특성 및 분해력 연구)

  • Han, Sang-Ik;Kang, Hang-Won;Jang, Ki-Chang;Seo, Woo-Duck;Oh, Seong-Hwan;Ra, Ji-Eun;Lee, Hyeong-Un;Chung, Mi-Nam;Choi, Kyung-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.2
    • /
    • pp.99-105
    • /
    • 2012
  • The main challenges for the development of agricultural bio-degradable mulching film concern the degradation during the lifetime of cultivated crops. A set of rice by-product (rice-hull and rice-bran) based bio-degradable mulching films was developed and tested, following the measurement of standard bio-degradability rate and adaptability in a large scale field experiment. The standard bio-degradability of bio-film passed the KS (Korea standard) regulation. The result of mechanical analysis of bio-degradable mulching film presented a higher mechanical strength and elongation rate compared with polyethylene film. In addition, bio-film could be degraded into fragments within 4 months under the field condition of several upland crops. Bio-degradable mulching film indicated great potential as a new source of agricultural bio-degradable material.

Fatigue Characteristics according to the Shape of Cover Plate in Steel Plate Girders (강판형의 덮개판 형상에 따른 피로특성)

  • Jung, Young Hwa;Hong, Sung Wook;Kim, Ik Gyeom;Jung, Jin Suck
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.2 s.45
    • /
    • pp.111-122
    • /
    • 2000
  • In this study, A series of fatigue tests have been performed on the fillet welded joints of cover plates in steel plate girders in order to quantitatively assess the fatigue characteristics according to the shapes of cover plates. From the results of fatigue tests, it has been shown that the fatigue strengths were slightly different according to their shapes, but satisfied the fatigue design curves in Korea and other countries. Also, from the results of beachmark tests, it has been confirmed that the points of fatigue crack initiation were closely related to the shapes of weld bead toes, and fatigue cracks simultaneously initiated from several points in weld bead toes have been grown as semi-elliptical surface cracks, and these cracks have been coalesced each other, and grown as through thickness cracks, and finally reached to fracture. Besides, from the results of fracture mechanics approaches, stress gradient factors were the most dominant factors among crack correction factors obtained from the existing equations and finite element analysis, and the fatigue life on fillet welded joints of cover plates could be estimated using the relations between fatigue crack growth rate and stress intensity factor range obtained from finite element analysis.

  • PDF