DOI QR코드

DOI QR Code

A Study on Stability and Economic feasibility according to Height on the MSE Wall with Pacing Panel

고속도로 도로부에 시공된 패널식 보강토 옹벽의 높이별 안전율과 경제성 검토

  • Park, Min-Cheol (Department of Civil Engineering, Kumoh National Institute of Technology)
  • 박민철 (금오공과대학교 토목공학과)
  • Received : 2018.02.21
  • Accepted : 2018.05.04
  • Published : 2018.05.31

Abstract

In this study, the stability and economic feasibility of a MSE (Mechanically stability earth) wall with a pre-cast concrete pacing panel was investigated for a standard section of highway. Based on the design criteria, the MSE walls of the panel type were designed considering the load conditions of the highway, such as the dead load of the concrete pavement, traffic load, and impact load of the barrier. The length of the ribbed metal strip was arranged at 0.9H according to the height of the MSE walls. Because the length of the reinforcement was set to 0.9H according to the height of the MSE wall, the external stability governed by the shape of the reinforced soil was not affected by the height increase. The factor of safety (FOS) for the bearing capacity was decreased drastically due to the increase in self-weight according to the height of the MSE wall. As a result of examining the internal stability according to the cohesive gravity method, the FOS of pullout was increased and the FOS of fracture was decreased. As the height of the MSEW wall increases, the horizontal earth pressure acting as an active force and the vertical earth pressure acting as a resistance force are increased together, so that the FOS of the pullout is increased. Because the long-term allowable tensile force of the ribbed metal strip is constant, the FOS of the fracture is decreased by only an increase in the horizontal earth pressure according to the height. The panel type MSE wall was more economical than the block type at all heights. Compared to the concrete retaining wall, it has excellent economic efficiency at a height of 5.0 m or more.

본 연구에서는 고속도로 도로부의 표준단면을 대상으로 패널식 보강토 옹벽의 높이별 안전율과 경제성에 대해 비교 검토하였다. 설계기준에 따라 하중조건은 고속도로의 단면 및 형상조건을 고려하여 콘크리트 포장의 사하중과 차량하중을 재하하고 최상단 보강재의 경우 방호벽의 충돌하중을 고려하였다. 보강재의 길이는 보강토 옹벽의 높이에 따라 0.9H로 배치하였기 때문에, 보강토체의 형상에 따라 지배되는 외적 안정성에 대해 높이의 증가에 따른 영향은 거의 없는 것으로 나타났다. 지지력에 대한 안전율은 보강토 옹벽의 높이에 따라 자중이 증가되기 때문에 급격히 감소되었다. 복합중력식 설계법에 따른 내적 안정성을 검토한 결과, 인발 안전율은 증가되고 파단 안전율은 감소되었다. 보강토 옹벽의 높이가 증가될수록 활동력으로 작용되는 수평토압과 저항력으로 작용되는 수직토압이 함께 증가되기 때문에 인발의 안전율은 증가되었다. 돌기형 강재 보강재의 장기 허용인장력은 상수이기 때문에, 높이에 따라 활동력에 대한 안전율은 수평토압이 증가되어 감소되었다. 블록식 보강토 옹벽보다는 패널식 보강토 옹벽의 경제성이 우수한 것으로 나타났고, 기존 옹벽과 비교하면 5.0 m이상의 높이에서 패널식 보강토 옹벽의 경제성이 가장 우수한 것으로 나타났다.

Keywords

References

  1. Henri Vidal, "La terre armee", Annales de L'Institut Technique du Batiment at des Travaux Pulics, vol. 19., nos. 223-4, July-August, France, 1966.
  2. Korean Geotechnical Society, "Structure foundation design standards specification", Ministry of Land, Transport and Maritime Affairs, 2015.
  3. Frankenberger, P. C., Bloomfield, R. A., Anderson, P. L., "Reinforced earth walls withstand Northbridge Earthquake", Proceedings of the international symposium on earth reinforcement, Japan, vol. 1, pp. 345-350, 1996.
  4. Korean Geosynthetics Society, "Practice of reinforced soil method : Design, Construction, Inspection", Book publishing C.I.R., 2014.
  5. Shin, E. C., and Lee, C. S., "Analysis of the Segmental Reinforced Retaining Wall Behavior by Field Monitoring", Journal of the Korean Geosynthetics Society, vol. 3,no. 1,pp. 3-15, 2004.
  6. Expressway & Transportation Research Institute, "Design guideline for integrated and pile bented abutment with mechanically stabilized earth wall brdige (IPM Bridge)", Korea Expressway Corporation, 2016.
  7. Chen, H. T., Hung, W. Y., Chang, C. C., Chen, Y. J. and Lee, C. J., "Centrifuge modeling test of a geotextile reinforced wall with a very wet clayey backfill", Geotextiles and Geomembranes, vol. 25, no. 6, pp. 346-359, 2007. DOI: https://doi.org/10.1016/j.geotexmem.2007.01.003
  8. Won, M. S. and Kim, Y. S., "Internal deformation behavior of geosynthetic-reinforced soil walls", Geotextiles and Geomembranes, vol. 25, no. 6, pp. 10-22, 2007. DOI: https://doi.org/10.1016/j.geotexmem.2006.10.001
  9. Yoo, C. and Kim, S. B., "Performance of a two-tier geosynthetic reinforced segmental retaining wall under a surcharge load: Full-scale load test and 3D finite element analysis", Geotextiles and Geomembranes, vol. 26, no. 6, pp. 460-472, 2008. DOI: https://doi.org/10.1016/j.geotexmem.2006.10.001
  10. Tatsuoka, F., Hirakawa, D., Nojiri, M., Aizawa, H., Nishikiori, H., Soma, R., Tateyama, M. and Watanabe, K., "A new type of integral bridge comprising geosynthetic-reinforced soil walls", Geosynthetics International, vol. 16, no. 4, pp. 301-326, 2009. DOI: https://doi.org/10.1680/gein.2009.16.4.301
  11. Lee, K. W., Cho, S. D., Han, J. G., and Hong, K. K., "Evaluation on stability of reinforced earth wall using geosynthetic strip with rounded band anchor", Journal of the Korean Geosynthetics Society, vol. 11, no. 3, pp. 43-51, 2012. DOI: https://doi.org/10.12814/jkgss.2012.11.3.043
  12. Yoo, C. S., Kim, S. B., and Lee, B. W., "Time-Dependent Deformation Characteristics of Geosynthetic-Reinforced Soil Using Plane Strain Compression Tests", Journal of the Korean geotechnical society, vol. 21, no. 10, pp. 85-97, 2005.
  13. Hirakawa, D., Uchimura, T., Shibata, Y., and Tatsuoka, F., "Time-dependant deformation of geosynthetics and geosynthetic-reinforced soil structures", Proc. of the 7th International Conference on Geosynthetics, Nice, vol. 4, pp. 1427-1430, 2002.
  14. Tatsuoka, F., Hirakawa, D., Shinoda, M., Kongkikul, W., and Uchimurra, T., "An old but New Issue; Viscous Properties of Polymer Geosynthetic Reinforced and Geosynthetic-Reinforced Soil Structures", Kenote Lecture, Proceedings of the 3rd Asian Regional Conference On Geosynthetics, Seoul, Korea, pp. 29-77, 2004.
  15. FHWA, "Mechanically Stabilized Earth Walls and Reinforced Soil Slopes, Design and Construction Guidelines", FHWA-NHI-00-043, Federal Highway Administration , U.S. Department of Transportations, Washington, DC, 2001.
  16. KEC, "Expressway Construction Guide Specification", Korea Expressway Corperation, 2012
  17. Expressway & Transportation Research Institute, "Development of A New Concept Abutment", EXTRI-2016-47-534.9607, Korea Expressway Corporation, 2016.