• Title/Summary/Keyword: 파괴인성계수

Search Result 106, Processing Time 0.03 seconds

Round Robin Analysis of Pressure-Temperature Limit Curve for Reactor Vessel (원자로 용기의 압력-온도 한계곡선 Round Robin 해석)

  • 정명조;이진호;박윤원;최영환;김영진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.2
    • /
    • pp.153-163
    • /
    • 2003
  • Performed here is a comparative assessment study for the generation of the pressure-temperature limit curve of the reactor vessel. A round robin problem is proposed using the data available in Korea and all organizations interested in the generation of the pressure-temperature limit curve are invited. The problems consisting of 12 cases for cool-down are solved and their results are compared to generate a reference solution for the reference problem, which will be useful in the evaluation of the generation of the pressure-temperature limit curve in the future.

Evaluation of J$_lc$ and T$_mat$ of aged 1Cr-1Mo-0.25V steel at elevated temperature (시효열화시킨 1Cr-1Mo-0.25V 강의 고온에서의 J$_lc$ 및 T$_mat$ 의 평가)

  • 윤기봉;윤석호;서창민;남승훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.2860-2870
    • /
    • 1994
  • When crack are detected in aged turbine rotors of power plants, information on fracture resistance of the aged material at operating temperature is needed for determination of critical loading condition and residual life of the turbine. In this study, fracture toughness (J$_lc$) and tearing modulus(T$_mat$) of virgin and thermally degraded 1Cr-1Mo-0.25V steel, which is one of the most widely used rotor steels, were measured at 538.deg. C according to ASTM E813 and ASTM E1152, respectively. Five kinds of specimen with different degradation levels were prepared by isothermal aging heat treatment at $630^{\circ}C.$ It was observed that J$_lc$ and T$_mat$ value decreased as the degradation level increased. Analysis of microstructures using a scanning electron microscope showed that the decrement of J$_lc$ is related to segregation of impurities at grain boundaries. It was also verified that the DC electric potential drop method is accurate and reliable for crack length monitoring at elevated temperature.

Fracture Toughness Comparison of Weld Metal and Heat-Affected Zone of Brittle Crack Arrest Steel Welding Joint (후물재 용접부의 용착금속과 열영향부의 파괴 인성 비교 연구)

  • Choi, Kyung-Shin;Kong, Seok-Hwan;Seol, Sang-Seok;Chung, Won-Jee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.8-14
    • /
    • 2021
  • Even welds that have passed non-destructive testing in the case of brittle crack arrest steel materials will actually have very fine weld defects. Based on studies showing that these defects adversely affect the structure if subjected to a certain period of load, the following conclusions were obtained by conducting CTOD tests on welding joints of high-strength BCA materials, structures comprising the upper decks of a large container vessel. First of all, the fatigue pre-cracking in the weld metal and heat affected areas was tested and the behavior was identified. Both parts of the welding joint are allowable range for the class regulations. In addition, CTOD results showed that the CTOD value in the heat affected area was more than 0.5 times higher than in the weld metal area.

Detection and Evaluation Technique of Hydrogen Attack (수소손상 검출과 평가기술)

  • Won, Soon-Ho;Hyun, Yang-Ki;Lee, Jong-O;Cho, Kyung-Shik;Lee, Jae-Do
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.1
    • /
    • pp.32-37
    • /
    • 2002
  • The presence of hydrogen in industrial plants is a source of damage. Hydrogen attack is one such form of degradation and often causing large tube ruptures that necessitate an immediate shutdown. Hydrogen attack may reduce the fracture toughness as well as the strength of steels. This reduction is caused partially by the presence of cavities and microcracks at the grain boundaries. In the past several techniques have been used with limited results. This paper describes the application of an ultrasonic velocity and attenuation in hydrogen damage. Ultrasonic tests showed a decrease in wave velocity and an increase in attenuation. Such results demonstrate the potential for ultrasonic nondestructive testing to quantify damage. Based on this study, reliable recommendation is suggested to detect hydrogen attack.

Study on the Improving Penetration Performance of Tungsten Heavy Alloy Penetrator by Heat Treatment (열처리 공정을 통한 텅스텐 중합금 관통자의 관통능력 향상에 관한 연구)

  • Kim, Myunghyun;Noh, Jooyoung;Lee, Youngwoo;An, Daehee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.322-327
    • /
    • 2020
  • An Armor Piercing Fin Stabilized Discarding Sabot (APFSDS), which penetrates and sabotages the target by physical energy, consists of a general penetrator using Depleted Uranium (DU) or Tungsten Heavy Alloy (THA) but THA is preferable because of manufacturing and environmental issues. On a THA penetrator, the penetration performance is determined mainly by self-sharpening depending on the hardness and toughness of materials. In particular, the tensile strength and impact strength work as key factors. The correlation coefficient for the penetration performance of the tensile strength was 0.721 and the impact strength was -0.599. The improved penetration performance by additional heat treatment was proven experimentally. Therefore, maintaining elongation over 9 % and tensile strength over 123 kg/㎟ is desirable, and the impact strength should be less than 6.8 kg·m/㎠ for good penetration performance.

Two Dimensional Size Effect on the Compressive Strength of Composite Plates Considering Influence of an Anti-buckling Device (좌굴방지장치 영향을 고려한 복합재 적층판의 압축강도에 대한 이차원 크기 효과)

  • ;;C. Soutis
    • Composites Research
    • /
    • v.15 no.4
    • /
    • pp.23-31
    • /
    • 2002
  • The two dimensional size effect of specimen gauge section ($length{\;}{\times}{\;}width$) was investigated on the compressive behavior of a T300/924 $\textrm{[}45/-45/0/90\textrm{]}_{3s}$, carbon fiber-epoxy laminate. A modified ICSTM compression test fixture was used together with an anti-buckling device to test 3mm thick specimens with a $30mm{\;}{\times}{\;}30mm,{\;}50mm{\;}{\times}{\;}50mm,{\;}70mm{\;}{\times}{\;}70mm{\;}and{\;}90mm{\;}{\times}{\;}90mm$ gauge length by width section. In all cases failure was sudden and occurred mainly within the gauge length. Post failure examination suggests that $0^{\circ}$ fiber microbuckling is the critical damage mechanism that causes final failure. This is the matrix dominated failure mode and its triggering depends very much on initial fiber waviness. It is suggested that manufacturing process and quality may play a significant role in determining the compressive strength. When the anti-buckling device was used on specimens, it was showed that the compressive strength with the device was slightly greater than that without the device due to surface friction between the specimen and the device by pretoque in bolts of the device. In the analysis result on influence of the anti-buckling device using the finite element method, it was found that the compressive strength with the anti-buckling device by loaded bolts was about 7% higher than actual compressive strength. Additionally, compressive tests on specimen with an open hole were performed. The local stress concentration arising from the hole dominates the strength of the laminate rather than the stresses in the bulk of the material. It is observed that the remote failure stress decreases with increasing hole size and specimen width but is generally well above the value one might predict from the elastic stress concentration factor. This suggests that the material is not ideally brittle and some stress relief occurs around the hole. X-ray radiography reveals that damage in the form of fiber microbuckling and delamination initiates at the edge of the hole at approximately 80% of the failure load and extends stably under increasing load before becoming unstable at a critical length of 2-3mm (depends on specimen geometry). This damage growth and failure are analysed by a linear cohesive zone model. Using the independently measured laminate parameters of unnotched compressive strength and in-plane fracture toughness the model predicts successfully the notched strength as a function of hole size and width.

The fracture resistance of heat pressed ceramics with wire reinforcement (금속선 강화에 따른 열 가압 도재의 파절저항)

  • Jo, Deuk-Won;Dong, Jin-Keun;Oh, Sang-Chun;Kim, Yu-Lee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.191-198
    • /
    • 2009
  • Statement of problem: Ceramics have been important materials for the restoration of teeth. The demands of patients for tooth-colored restorations and the availability of various dental ceramics has driven the increased use of new types of dental ceramic materials. Improved physical properties of theses materials have expanded its use even in posterior crowns and fixed partial dentures. However, ceramic still has limitation such as low loading capability. This is critical for long-span bridge, because bridge is more subject to tensile force. Purpose: The wire reinforced ceramic was designed to increase the fracture resistance of ceramic restoration. The purpose of this study was to evaluate the fracture resistance of wire reinforced ceramic. Material and methods: Heat pressed ceramic(ingot No.200 : IPS Empress 2, Ivoclar Vivadent, Liechtenstein) and Ni-Cr wire(Alfa Aesar, Johnson Matthey Company, USA) of 0.41 mm diameter were used in this study. Five groups of twelve uniform sized ceramic specimens(width 4 mm, thickness 2 mm, length 15 mm) were fabricated. Each group had different wire arrangement. Wireless ceramic was used as control group. The experimental groups were divided according to wire number and position. One, two and three strands of wires were positioned on the longitudinal axis of specimen. In another experimental group, three strands of wires positioned on the longitudinal axis and five strands of wires positioned on the transverse axis. Three-point bending test was done with universal testing machine(Z020, Zwick, Germany) to compare the flexural modulus, flexural strength, strain at fracture and fracture toughness of each group. Fractured ceramic specimens were cross-sectioned with caborundum disc and grinded with sandpaper to observe interface between ceramic and Ni-Cr wire. The interface between ceramic and Ni-Cr wire was analyzed with scanning electron microscope(JSM-6360, JEOL, Japan) under platinum coating. Results: The results obtained were as follows: 1. The average and standard deviation in flexural modulus, flexural strength and fracture toughness showed no statistical differences between control and experimental groups. However, strain was significantly increased in wire inserted ceramics(P<.001). 2. Control group showed wedge fracture aspects across specimen, while experimental groups showed cracks across specimen. 3. Scanning electron microscopic image of cross-sectioned and longitudinally-sectioned specimens showed no gap at the interface between ceramic and Ni-Cr wire. Conclusion: The results of this study showed that wire inserted ceramics have a high strain characteristic. However, wire inserted ceramics was not enough to use at posterior area of mouth in relation to flexural modulus and flexural strength. Therefore, we need further studies.

Tribological Properties of Pressureless-sinteed Silicon Carbide (상압소결 탄화규소 소결체의 마찰마모특성)

  • Baik, Yong-Hyuck;Choi, Woong;Seo, Young-Hean;Park, Yong-Kap
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.7
    • /
    • pp.721-725
    • /
    • 1998
  • In this study solid-phase sintered silicon caribide samples composed of SiC powder having boron and car-bon black as additives were prepared by pressureless sintering at $1950^{\circ}C$. The bending strength the frac-ture toughness and the specific werar rate of the samples were examined and the micro structures of the broken and the worn surface were observed by SEM to understand the relationship between the tri-bological charcteristics and the micro structure. Additionally the relationship between the micro struc-tures and the tribological characteristics of the samples for the frictional opponents SiC and $Al_{2}O_{3}$ pins were investigated Conclusions are as follows ; 1. The specific were rate of the samples for the SiC pin was larger than that for the $Al_{2}O_{3}$ pin. HOwever the specific wear rate for the $Al_{2}O_{3}$ pin was increased about 6,45 times as that for the SiC pin under the load increasing. 2. The specific wear rate of the SiC pin was larger than that of the $Al_{2}O_{3}$ pin. owever the specific wear rate of the $Al_{2}O_{3}$ pin was increased about 4 times as that of the SiC pin under the load increasing 3. The micro stucture of the worn surface showed a flat face without cracks in the case that the frictional opponents has the low friction coefficient but in the case of without cracks in the case that the frictional opponents has the low friction coefficient but in the case of the high friction coefficient the micro structure of the worn surface showed an uneven face having spread-ed cracks. 4. The tribological characteristics of thesolid-phase sintered SiC samples was similar to that of li-quid-phase sintered ones when the pin having the high friction coefficient was used.

  • PDF

The Crack Analysis and Redesign of Horizontal Fin of F-5E/F's External Fuel Tank (F-5E/F 외부 연료탱크 수평 핀 균열 분석 및 재설계)

  • Kang, Chi-Hang;Yoon, Young-In;Jung, Dae-Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.382-388
    • /
    • 2010
  • In this work the replacement material for magnesium alloy was investigated and an optimized design was suggested for the horizontal fin of a fighter's external fuel tank. For the replacement of magnesium alloy, Aluminum alloy, AL 2034-T351, was selected by considering material properties and its procurement. The strength and fracture toughness properties of AL 2034-T351 are stronger than those of magnesium alloy, but the specific weight of AL 2034-T351 is heavier than that of magnesium alloy by 65%. To meet the allowable limit of C.G. shift in the tank, the design of horizontal fin was optimized by reducing the original shape by 20% and resizing the maximum thickness to 7 mm. From the results of the static and dynamic stress analysis for improving the safety factor of the joint section and the joint hole, the radius of curvature in the aft joint section of the new fin was designed as 8.5mm.

Effect of Al2O3 Filler Addition on Sintering Behavior and Physical Characteristics of BaO-B2O3-ZnO Glass Ceramic System (BaO-B2O3-ZnO 결정화 유리계에서 Al2O3 Filler의 첨가에 따른 소결거동 및 물성변화)

  • Kim, Byung-Sook;Kim, Young-Nam;Lim, Eun-Sub;Lee, Joon-Hyung;Kim, Jeong-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.2 s.273
    • /
    • pp.110-116
    • /
    • 2005
  • Suitable compositions which are sinterable at low temperature in the $BaO-B_{2}O_{3}-ZnO$ glass system were investigated as a function of the ratio between BaO and ZnO. The effect of $Al_{2}O_3$ filler on densification and physical characteristics of the glass was also examined. When the amount of $Al_{2}O_3$ filler increased, the densification rate and the values of dielectric constant, thermal expansion coefficient and hardness in the glass-filler composites decreased gradually. The decreasing rate of the physical properties accelerated when fine $Al_{2}O_3$ filler was used. However, the fracture toughness of the composite rather increased due to the existence of filler particles and pores which effectively suppressed crack propagation with addition of fine $Al_{2}O_3$ filler.