• Title/Summary/Keyword: 파고 에너지

Search Result 155, Processing Time 0.019 seconds

Wave Control by Submerged Breakwater under the Solitary Wave(Tsunami) Action (고립파(지진해일) 작용하의 수중방파제에 의한 파랑제어)

  • Lee, Kwang Ho;Kim, Chang Hoon;Jeong, Seong Ho;Kim, Do Sam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3B
    • /
    • pp.323-334
    • /
    • 2008
  • Present study examined the functionality of the solitary wave (tsunami) control of the two-rowed porous submerged breakwater by numerical experiments, using a numerical wave tank which is based on the Navier-Stokes equation to explain fluid fields and uses a Volume of Fluid (VOF) method to capture the free water surface. Solitary wave was generated by the internal wave source installed within the computational zone in the numerical wave tank and its wave transformations by structure were compared with those in the previous study. Comparisons with the precious numerical results showed a good agreement. Based on these results, several tow-dimensional numerical modeling investigations of the water fields, including wave transformations, reflection, transmission and energy flux, by the one- and two-rowed permeable submerged breakwater under solitary waves were performed. Even if, it is a research of the limited scope, in case of two-rowed permeable submerged breakwater with $h_0/h=0.925$ ($h_0$ is height of submerged breakwater and h is water depth), the wave height damping in range of $l/L_{eff}>0.4$($L_{eff}$ is effective distance of solitary wave) can reach nearly 60% of the incident wave height. In addition, it is found that reflection coefficient increases nearly 47% and transmission coefficient decreases nearly 18% than one-rowed one. The numerical results revealed that the tow-rowed submerged breakwater can control the incident solitary wave economically and more efficiently than the one-rowed one.

Optimal Design of Overtopping Wave Energy Converter Substructure based on Smoothed Particle Hydrodynamics and Structural Analysis (SPH 및 구조해석에 기반한 월파수류형 파력발전기 하부구조물 최적 설계)

  • Sung-Hwan An;Jong-Hyun Lee;Geun-Gon Kim;Dong-hoon Kang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.992-1001
    • /
    • 2023
  • OWEC (Overtopping Wave Energy Converter) is a wave power generation system using the wave overtopping. The performance and safety of the OWEC are affected by wave characteristics, such as wave height, period. To mitigate this issue, optimal OWEC designs based on wave characteristics must be investigated. In this study, the environmental conditions along the Ulleungdo coast were used. The hydraulic efficiency of the OWEC was calculated using SPH (Smoothed Particle Hydrodynamics) by comparing 4 models that changed the substructure. As a result, it was possible to change the substructure. Through design optimization, a new truss-type structure, which is a substructure capable of carrying the design load, was proposed. Through a case study using member diameter and thickness as design variables, structural safety was secured under allowable stress conditions. Considering wave load, the natural frequency of the proposed structure was compared with the wave period of the relevant sea area. Harmonic response analysis was performed using wave with a 1-year return period as the load. The proposed substructure had a reduced response magnitude at the same exciting force, and achieved weight reduction of more than 32%.

A study on statistical characteristics of time-varying underwater acoustic communication channel influenced by surface roughness (수면 거칠기에 따른 수면 경로의 시변 통신채널 통계적 특성 분석)

  • In-Seong Hwang;Kang-Hoon Choi;Jee Woong Choi
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.491-499
    • /
    • 2023
  • Scattering by Sea surface roughness occurs due to sea level roughness, communication performance deteriorates by causing frequency spread in communication signals and time variation in communication channels. In order to compare the difference in time variation of underwater acoustic communication channel according to the surface roughness, an experiment was performed in a tank owned by Hanyang University Ocean Acoustics Lab. Artificial surface roughness was created in the tank and communication signals with three bandwidths were used (8 kHz, 16 kHz, 32 kHz). The measured surface roughness was converted into a Rayleigh parameter and used as a roughness parameter, and statistical analysis was performed on the time-varying channel characteristics of the surface path using Doppler spread and correlation time. For the Doppler spread of the surface path, the Weighted Root Mean Square Doppler spread (wfσν) that corrected the effect of the carrier frequency and bandwidth of the communication signal was used. Using the correlation time of the surface path and the energy ratio of the direct path and the surface path, the correlation of total channels was simulated and compared with the measured correlation time of total channels. In this study, we propose a method for efficient communication signal design in an arbitrary marine environment by using the time-varying characteristics of the sea surface path according to the sea surface roughness.

Coastal erosion and countermeasures of Oahu Island (오아후섬 연안 침식 현상과 대책)

  • Dong-Yoon Yang;Min Han
    • The Korean Journal of Quaternary Research
    • /
    • v.31 no.2
    • /
    • pp.31-42
    • /
    • 2017
  • Oahu Island is the third largest island of the Hawaiian chain which located in the northern hemisphere close to the center of the Pacific Ocean and is affected by storms and tsunamis in the northern and southern hemispheres. High-wave and high-energy waves are concentrated in the winter and summer, and the Oahu Coast is always in an active erosion environment. These natural effects are likely to become more severe with global warming and sea level rise. In addition, as the anthropogenic factors, there was indiscreet flood of development on the coast until the 1972 coastal management law was enacted. However, the present coastal erosion phenomenon was not serious than thought. The cause can be found in the improvement of the coastal management of the provincial government. The Hawaiian government is no longer applying this method, which was built prior to the enactment of the Coastal Control Act, due to increased erosion and side effects at other sites. So, in Hawaii, it is mainly applied to soft revetment methods such as supplying sand or making artificial sand dunes as an erosion prevention method. In Korea, there are some places where the soft revetment method is applied partially, but it is mainly composed of hard revetment structure.

A Way for Creating Human Bioclimatic Maps using Human Thermal Sensation (Comfort) and Applying the Maps to Urban and Landscape Planning and Design (인간 열환경 지수를 이용한 생기후지도 작성 및 도시·조경계획 및 디자인에의 적용방안)

  • Park, Soo-Kuk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.1
    • /
    • pp.21-33
    • /
    • 2013
  • The purpose of this study is to find applicabilities of human bioclimatic maps, using human thermal sensation(comfort) in summer, with microclimatic in situ data and computer simulation results at the study site of downtown Daegu. This includes the central business district(CBD) area and two urban parks, the Debt Redemption Movement Memorial Park and the 2.28 Park, for urban and landscape planning and design. Climatic data and urban setting information for the analysis of human thermal sensation were obtained from in situ measurement and the geographic information system data. As a result, the CBD had higher air temperature than the parks when the wind speed was low. Relative humidities were opposite to the air temperature. Especially, same directional streets with local wind direction had lower air temperature than streets perpendicular to the wind direction. The most important climatic variable of human thermal sensation in summer was direct beam solar radiation. Also, creating shadow areas would be the most relevant method for modifying hot thermal environments in urban areas. The most effective method of creating shadow patterns was making a tree shadow over a pergola, and the second best one was making a tree shadow on the front of north directional building walls. Moreover, how to plant trees for creating shadow patterns was important as well as what kind of trees should be planted. The results of human thermal sensation were warm to very hot at sunny areas and neutral to warm at shaded ones. At the sunny areas, wide, squared shape areas had a little bit higher thermal sensation than those of narrow streets. The albedo change of building walls 0.15 and ground surface 0.1 could change 1/6 of a sensation level at the shaded areas and 1/3 at the sunny ones. These microclimatic approaches will be useful to find appropriate methods for modifying thermal environments in urban areas.