• Title/Summary/Keyword: 틸트 메커니즘

Search Result 7, Processing Time 0.021 seconds

Applying tilt mechanism for high-resolution image acquisition (고해상도 영상 획득을 위한 틸트 메커니즘 적용 기법)

  • Song, Chun-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.12
    • /
    • pp.31-37
    • /
    • 2014
  • In this paper, to compensate the degraded performance in high-resolution infrared sensor due to assembling error, the influence of each component was evaluated through the sensitivity analysis of lens assembly, axis mirror, and detector and also suggested detector tilt mechanism for compensation. 3 detector tilt mechanisms were investigated. The first one is 'Shim plate' method which is applying shim on installing plane. The second one is 'Tilting screw' method that is using tilt screw for adjusting detection plane. The last one is 'Micrometer head' method that is installing micrometer on detection plane and acquiring quantitative data. Based on the investigation result, 'Tilting screw' method was applied due to ease of user control, small volume, and real-time controllability, thereby we could acquire high-resolution infrared images. The research result shows that the tilting mechanism is necessary technology for the implementation of high-resolution infrared imaging system.

Design of 3-Axis Focus Mechanism Using Piezoelectric Actuators for a Small Satellite Camera (소형 위성 카메라의 압전작동기 타입 3-축 포커스 메커니즘 설계)

  • Hong, Dae Gi;Hwang, Jai Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.3
    • /
    • pp.9-17
    • /
    • 2018
  • For Earth observation, a small satellite camera has relatively weak structural stability compared to medium-sized satellite, resulting in misalignment of optical components due to severe launching and space environments. These alignment errors can deteriorate the optical performance of satellite cameras. In this study, we proposed a 3-axis focus mechanism to compensate misalignment in a small satellite camera. This mechanism consists of three piezo-electric actuators to perform x-axis and y-axis tilt with de-space compensation. Design requirements for the focus mechanism were derived from the design of the Schmidt-Cassegrain target optical system. To compensate the misalignment of the secondary mirror (M2), the focus mechanism was installed just behind the M2 to control the 3-axis movement of M2. In this case, flexure design with Box-Behnken test plan was used to minimize optical degradation due to wave front error. The wave front error was analyzed using ANSYS. The fabricated focus mechanism demonstrated excellent servo performance in experiments with PID servo control.

Pan-tilt Motion Generation of Robot Eye by Using a Pair of Push-pull Wires (한 쌍의 푸쉬-풀 와이어를 이용한 로봇 안구의 팬-틸트 모션 생성)

  • Jung, Chan-Yul;Oh, Kyung-Geune;Park, Shin-Suk;Kim, Seung-Jong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.1
    • /
    • pp.3-8
    • /
    • 2011
  • This paper introduces a robot eye module, of which two degree-of-freedom motions, i.e. panning and tilting, are driven by a pair of wires. The main feature of the module is that each wire can generate push-pull motion without buckling. It is thanks to a Teflon tube which guides the path of the moving wire. End points of the tube and wire have pivot elements so that a smooth push-pull motion is produced even when the end point of wire is moved by eye rotation. This mechanism helps the eye module to be very compact. In this paper, the structure of the robot eye module is introduced in detail, and the required motor angles for a certain direction of eye line are investigated analytically and experimentally.

Real-Time Moving Object Tracking System using Advanced Block Based Image Processing (개선된 블록기반 영상처리기법에 의한 실시간 이동물체 추적시스템)

  • Kim, Dohwan;Cheoi, Kyung-Joo;Lee, Yillbyung
    • Korean Journal of Cognitive Science
    • /
    • v.16 no.4
    • /
    • pp.333-349
    • /
    • 2005
  • In this paper, we propose a real tine moving object tracking system based on block-based image processing technique and human visual processing. The system has two nun features. First, to take advantage of the merit of the biological mechanism of human retina, the system has two cameras, a CCD(Charge-Coupled Device) camera equipped with wide angle lens for more wide scope vision and a Pan-Tilt-Zoon tamers. Second, the system divides the input image into a numbers of blocks and processes coarsely to reduce the rate of tracking error and the processing time. Tn an experiment, the system showed satisfactory performances coping with almost every noisy image, detecting moving objects very int and controlling the Pan-Tilt-Zoom camera precisely.

  • PDF

A study on the development of variable speed camera for heavy duty (중부하용 가변속 카메라 회전대 개발에 대한 연구)

  • Kim J.H.;Sung H.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.299-300
    • /
    • 2006
  • The camera and reduction mechanism that are equipment outdoors camera for general CCTV are miniaturization trend gradually. The foreign countries began to sell variableness speed type camera drivels that do DC voltage by motive power recently. But, Domestic is state that enterprise which has technology connected with this does not exist. We need optimum control program design, an internal organs technology, actuator interface and a driver design technology that have position control special quality of high accuracy as a necessary technology for CCTV camera drivers. Also, we need detailed mechanism design and a manufacture technology of camera drivers that behave variable speed essentially.

  • PDF

The Effects of Different Backrest Pivot Positions on the Human Body During Reclining of the Office Chair (사무용 의자에서 등판의 회전축 위치가 틸트시 인체에 미치는 영향)

  • Chung, Kyung-Ryul;Hyeong, Joon-Ho;Choi, Chun-Ho;Kim, Sa-Yup;Hong, Gyu-Seog
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.2
    • /
    • pp.167-174
    • /
    • 2010
  • In this study, the optimal position for the backrest pivot of an office chair was investigated by evaluating its performance in terms of the lumbar support and sliding distance of the back from the backrest during tilting motions. The simulation was performed using a mathematical model, which included a human body and a chair. Forty-two backrest pivot points were selected on the sagittal plane around the hip joint of a sitting model. A motion analysis study was also performed using a prototype of an office chair (A-type) with a backrest pivot located on the hip joint of a normal Korean model and a typical office chair (B-type) with its pivot located under the seat. The simulation results showed that both the lordosis angle and the slide distance of the back were minimized when the backrest pivot was positioned close to the hip joint. The experimental results showed that the slide distance and gap between the sitter's lumbar and the backrest was smaller with the A-type than the B-type. Based on the simulation and experimental results, it can be concluded that the backrest can support the sitter's lumbar area more effectively as the pivot position for reclining approaches closer to the hip joint. In this position, the sitter can maintain a comfortable and healthy sitting posture. This paper presents the methods and guidelines for designing an office chair with ergonomic considerations.

A LiDAR-based Visual Sensor System for Automatic Mooring of a Ship (선박 자동계류를 위한 LiDAR기반 시각센서 시스템 개발)

  • Kim, Jin-Man;Nam, Taek-Kun;Kim, Heon-Hui
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1036-1043
    • /
    • 2022
  • This paper discusses about the development of a visual sensor that can be installed in an automatic mooring device to detect the berthing condition of a vessel. Despite controlling the ship's speed and confirming its location to prevent accidents while berthing a vessel, ship collision occurs at the pier every year, causing great economic and environmental damage. Therefore, it is important to develop a visual system that can quickly obtain the information on the speed and location of the vessel to ensure safety of the berthing vessel. In this study, a visual sensor was developed to observe a ship through an image while berthing, and to properly check the ship's status according to the surrounding environment. To obtain the adequacy of the visual sensor to be developed, the sensor characteristics were analyzed in terms of information provided from the existing sensors, that is, detection range, real-timeness, accuracy, and precision. Based on these analysis data, we developed a 3D visual module that can acquire information on objects in real time by conducting conceptual designs of LiDAR (Light Detection And Ranging) type 3D visual system, driving mechanism, and position and force controller for motion tilting system. Finally, performance evaluation of the control system and scan speed test were executed, and the effectiveness of the developed system was confirmed through experiments.