• Title/Summary/Keyword: 특징 차원 축소

Search Result 144, Processing Time 0.022 seconds

Detection and Disgnosis of induction motor using Conditional FCM and Radial Basis Function Network (조건부 FCM과 방사기저함수네트웍을 이용한 유도전동기 고장 검출)

  • 김승석;김형배;유정웅;전명근
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.321-324
    • /
    • 2004
  • 본 논문에서는 유도전동기 고장진단을 위하여 계층적인 하이브리드 뉴럴네트웍을 제안하였다. 시스템의 입출력 데이터에 근거하여 패턴을 분류하고자 할 때 직접적인 분류가 어렵거나 성능이 좋지 않을 경우 적절한 방법을 통하여 변환을 하거나 또는 패턴 분류기의 특성에 맞도록 변환하여 패턴 분류 성능을 향상하는 등 단계별 변환 및 분류 기법을 이용하였다. 제안된 방법에서는 실험에 의해 측정된 전류값을 주기별로 주성분분석(PCA) 기법을 이용하여 입력차원을 축소한 후 이를 조건부 FCM으로 방사기저함수의 초기치를 최적화하여 학습을 하였다. 이는 주성분분석이 가지는 특성을 이용하여 데이터의 특징을 나누었으며 이를 뉴럴네트웍의 학습 기능을 이용하여 모델의 최종 성능을 개선하는 것이다. 각각의 알고리즘이 가지는 특징을 활용하면서도 단점을 계층적으로 보안하여 유도 전동기 고장 진단 성능을 개선하였다. 이를 실제 계측된 유도전동기 데이터를 이용하여 제안된 방법의 유용성을 보이고자 한다.

  • PDF

Compression method of feature based on CNN image classification network using Autoencoder (오토인코더를 이용한 CNN 이미지 분류 네트워크의 feature 압축 방안)

  • Go, Sungyoung;Kwon, Seunguk;Kim, Kyuheon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.280-282
    • /
    • 2020
  • 최근 사물인터넷(IoT), 자율주행과 같이 기계 간의 통신이 요구되는 서비스가 늘어감에 따라, 기계 임무 수행에 최적화된 데이터의 생성 및 압축에 대한 필요성이 증가하고 있다. 또한, 사물인터넷과 인공지능(AI)이 접목된 기술이 주목을 받으면서 딥러닝 모델에서 추출되는 특징(feature)을 디바이스에서 클라우드로 전송하는 방안에 관한 연구가 진행되고 있으며, 국제 표준화 기구인 MPEG에서는 '기계를 위한 부호화(Video Coding for Machine: VCM)'에 대한 표준 기술 개발을 진행 중이다. 딥러닝으로 특징을 추출하는 가장 대표적인 방법으로는 합성곱 신경망(Convolutional Neural Network: CNN)이 있으며, 오토인코더는 입력층과 출력층의 구조를 동일하게 하여 출력을 가능한 한 입력에 근사시키고 은닉층을 입력층보다 작게 구성하여 차원을 축소함으로써 데이터를 압축하는 딥러닝 기반 이미지 압축 방식이다. 이에 본 논문에서는 이러한 오토인코더의 성질을 이용하여 CNN 기반의 이미지 분류 네트워크의 합성곱 신경망으로부터 추출된 feature에 오토인코더를 적용하여 압축하는 방안을 제안한다.

  • PDF

A Study on Face Recognition using Support Vector Machine (SVM을 이용한 얼굴 인식에 관한 연구)

  • Kim, Seung-Jae;Lee, Jung-Jae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.6
    • /
    • pp.183-190
    • /
    • 2016
  • This study proposed a more stable robust recognition algorithm which detects faces reliably even in cases where there are changes in lighting and angle of view, as well it satisfies efficiency in calculation and detection performance. The algorithm proposed detects the face area alone after normalization through pre-processing and obtains a feature vector using (PCA). Also, by applying the feature vector obtained for SVM, face areas can be tested. After the testing, using the feature vector is final face recognition performed. The algorithm proposed in this study could increase the stability and accuracy of recognition rates and as a large amount of calculation was not necessary due to the use of two dimensions, real-time recognition was possible.

Fault Diagnosis of Induction Motor using Linear Discriminant Analysis (선형판별분석기법을 이용한 유도전동기의 고장진단)

  • 전병석;이상혁;박장환;유정웅;전명근
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.4
    • /
    • pp.104-111
    • /
    • 2004
  • In this paper, we propose a diagnosis algorithm to detect faults of induction motor using LDA First, after reducing the input dimension of a current value measured by experiment at each period using PCA method, we extract characteristic vectors for each fault using LDA Next, we analyze the driving condition of an induction motor using the Euclidean distance between a precalculated characteristic vector and an input vector. Finally, from the experiments under various noise conditions showing the properties of the LDA method, we obtained better results than the case of using the PCA method.

Deterioration Detection System for Railway Point Machine Using Current Signal and SVM (선로전환기의 전류신호를 이용한 SVM 기반의 노후화 탐지 시스템)

  • Choi, Yongju;Lee, Jonguk;Park, Daihee;Chung, Yongwha;Lim, Chulhoo;Yoon, Sukhan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.599-602
    • /
    • 2016
  • 고속철도 산업의 핵심 요소 중 하나인 선로전환기는 열차의 진로를 제어해주는 부품으로, 해당 설비의 노후화를 조기에 탐지하여 적절한 시기에 선로전환기를 교체하는 것은 안정적인 철도운영에서 매우 중요하다. 본 논문에서는 선로전환기의 작동 시 발생하는 전류 신호를 이용하여 선로전환기의 노후화를 탐지하는 시스템을 제안한다. 제안하는 시스템은 선로전환기로부터 전류 신호를 취득한 후, 주파수 도메인의 특징인 SK값으로 변환하여 특징벡터를 추출하고, PCA를 이용하여 SK벡터의 차원 축소와 동시에 중요한 특징들만을 선택한다. 마지막으로, 선로전환기의 노후화를 탐지하는 문제를 이진 클래스 문제로 해석하여, 기계학습의 대표적 모델인 SVM을 이용하여 선로전환기의 노후화 여부를 탐지한다. 실제 국내에서 운행 중인 선로전환기의 전류 신호를 취득하여 실험한 결과, 선로전환기의 노후화 상황을 안정적으로 탐지함을 확인하였다.

Morphological Object Recognition Algorithm (몰포러지 물체인식 알고리즘)

  • Choi, Jong-Ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.2
    • /
    • pp.175-180
    • /
    • 2018
  • In this paper, a feature extraction and object recognition algorithm using only morphological operations is proposed. The morphological operations used in feature extraction are erosion and dilation, opening and closing combining erosion and dilation, and morphological edge and skeleton detection operation. In the process of recognizing an object based on features, a pooling operation is applied to reduce the dimension. Among various structuring elements, $3{\times}3$ rhombus, $3{\times}3$ square, and $5{\times}5$ circle are arbitrarily selected in morphological operation process. It has confirmed that the proposed algorithm can be applied in object recognition fields through experiments using Internet images.

Facial Impression Classification for Sasang Constitution Diagnosis (사상체질 진단을 위한 얼굴인상 분류)

  • Jang, Kyung-Shik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.1
    • /
    • pp.196-204
    • /
    • 2008
  • In this paper, we propose an efficient method to classify human facial impression using frontal face image. The features that represent the shape of eye, jaw and face are used. The proposed method employs PCA, LDA and SVM in series. PCA is used to project the feature space to a low dimensional subspace. LDA produces well separated classes in a low dimensional subspace even under severe variation. This results in good discriminating power for classification. SVM is used to classify the data. Human face has been classified for 8 facial impressions. The experiments have been performed for many face images, and show encouraging result.

Comparison of Classification and Convolution algorithm in Condition assessment of the Failure Modes in Rotational equipments with varying speed (회전수가 변하는 기기의 상태 진단에 있어서 특성 기반 분류 알고리즘과 합성곱 기반 알고리즘의 예측 정확도 비교)

  • Ki-Yeong Moon;Se-Yun Hwang;Jang-Hyun Lee
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.301-301
    • /
    • 2022
  • 본 연구는 운영 조건이 달라짐에 따라 회전수가 변하는 기기의 정상적 가동 여부와 고장 종류를 판별하기 위한 인공지능 알고리즘의 적용을 다루고 있다. 회전수가 변하는 장비로부터 계측된 상태 모니터링 센서의 신호는 비정상(non-stationary)적 특성이 있으므로, 상태 신호의 한계치가 고장 판별의 기준이 되기 어렵다는 점을 해결하고자 하였다. 정상 가동 여부는 이상 감지에 효율적인 오토인코더 및 기계학습 알고리즘을 적용하였으며, 고장 종류 판별에는 기계학습법과 합성곱 기반의 심층학습 방법을 적용하였다. 변하는 회전수와 연계된 주파수의 비정상적 시계열도 적절한 고장 특징 (Feature)로 대변될 수 있도록 시간 및 주파수 영역에서 특징 벡터를 구성할 수 있음을 예제로 설명하였다. 차원 축소 및 카이 제곱 기법을 적용하여 최적의 특징 벡터를 추출하여 기계학습의 분류 알고리즘이 비정상적 회전 신호를 가진 장비의 고장 예측에 활용될 수 있음을 보였다. 이 과정에서 k-NN(k-Nearest Neighbor), SVM(Support Vector Machine), Random Forest의 기계학습 알고리즘을 적용하였다. 또한 시계열 기반의 오토인코더 및 CNN (Convolution Neural Network) 적용하여 이상 감지와 고장진단을 수행한 결과를 비교하여 제시하였다.

  • PDF

Extraction and classification of characteristic information of malicious code for an intelligent detection model (지능적 탐지 모델을 위한 악의적인 코드의 특징 정보 추출 및 분류)

  • Hwang, Yoon-Cheol
    • Journal of Industrial Convergence
    • /
    • v.20 no.5
    • /
    • pp.61-68
    • /
    • 2022
  • In recent years, malicious codes are being produced using the developing information and communication technology, and it is insufficient to detect them with the existing detection system. In order to accurately and efficiently detect and respond to such intelligent malicious code, an intelligent detection model is required, and in order to maximize detection performance, it is important to train with the main characteristic information set of the malicious code. In this paper, we proposed a technique for designing an intelligent detection model and generating the data required for model training as a set of key feature information through transformation, dimensionality reduction, and feature selection steps. And based on this, the main characteristic information was classified by malicious code. In addition, based on the classified characteristic information, we derived common characteristic information that can be used to analyze and detect modified or newly emerging malicious codes. Since the proposed detection model detects malicious codes by learning with a limited number of characteristic information, the detection time and response are fast, so damage can be greatly reduced and Although the performance evaluation result value is slightly different depending on the learning algorithm, it was found through evaluation that most malicious codes can be detected.

A Study on Face Recognition System Using LDA and SVM (LDA와 SVM을 이용한 얼굴 인식 시스템에 관한 연구)

  • Lee, Jung-Jai
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.11
    • /
    • pp.1307-1314
    • /
    • 2015
  • This study proposed a more stable robust recognition algorithm which detects faces reliably even in cases where there are changes in lighting and angle of view, as well it satisfies efficiency in calculation and detection performance. The algorithm proposed detects the face area alone after normalization through pre-processing and obtains a feature vector using (PCA). Also, by applying the feature vector obtained for SVM, face areas can be tested. After the testing, the feature vector is applied to LDA and using Euclidean distance in the 2nd dimension, the final analysis and matching is performed. The algorithm proposed in this study could increase the stability and accuracy of recognition rates and as a large amount of calculation was not necessary due to the use of two dimensions, real-time recognition was possible.