Proceedings of the Korean Information Science Society Conference
/
2001.04b
/
pp.499-501
/
2001
본 논문에서는 사실적인 아바타(avata) 구현의 핵심이라 할 수 있는 입체적인 얼굴 표현을 위해, (※원문참조) 기하학적인 정보를 사용하지 않고 중첩 메쉬를 허용하는 개선된 메쉬 워프 알고리즘(mesh warp algor※원문참조)을 이용하여 IBR(Image Based Rendering)을 구현하는 방법을 제안한다. 3차원 모델을 대신하기 위해 (※원문참조) 인물의 정면, 좌우 반측면, 좌우 측면의 얼굴 영상들에 대해 작성된 메쉬를 사용한다. 합성하고자 하는 (※원문참조) 정면 얼굴 영상에 대해서는 정면 메쉬만을 작성하고, 반측면이나 측면 메쉬는 표준 메쉬를 근거로 자(※원문참조)된다. 얼굴 포즈 합성의 성능을 펴가하기 위해, 얼굴을 수평으로 회전하는 실제 포즈 영상과 합성된 포(※원문참조)에 대해 주요 특징점 들을 정규화 한 위치 오차를 측정한 결과, 평균적으로 양 눈의 중심에서 입의 (※원문참조)리에 대해 약 5%의 위치 오차만이 발생한 것으로 나타났다.
Proceedings of the Korean Information Science Society Conference
/
2001.04b
/
pp.370-372
/
2001
본 논문은 ㄴ-첨가 규칙을 전 처리를 통한 문자열-발음열 변환 기법을 소개한다. 한국어 TTS 시스템에서의 고질적인 문제는 문자열-발음열 변환이라고 할 수 있는데, 그 이유는 한국어의 특징상 음운적 조건과 형태론적 조건등에 의해 다양한 방법과 예외처리를 요구하기 때문이다. 그 중 ㄴ-첨가 규칙은 위와 같은 대표적인 현상으로 많은 문제점과 그에 따른 연구를 필요로 하고 있다. 이 시스템은 형태소 분석을 선행한 후, 특수문자나 숫자를 정규화하고 ㄴ-첨가 규칙을 전 처리한 후, 음운변화 현상을 분석하여 선택적으로 규칙을 적용하여 발음열을 생성한다. 제안된 시스템은 기존의 시스템에 비해 더욱 효과적인 음운, 형태소 변화를 가져옴과 함께, 특히 ㄴ-첨가가 적용되는 문장을 효과적으로 해결할 수 있어 TTS시스템에 좋은 결과를 가져오게 될 것이다.
Proceedings of the Korean Information Science Society Conference
/
1998.10c
/
pp.509-511
/
1998
본 논문에서는 동영상 데이터베이스에서 Key-frame을 검색하는 방법을 제안한다. 본 논문에서는 Key-frame을 검색하기위해 컬러 피쳐를 공간영역에서 추출하지 않고 wavelet transform 영역에서 컬러 피쳐를 추출하는 방법을 제안한다. wavelet transform 의 저주파 밴드는 영상전체의 특징을 잘 나타내고 고주파 밴드는 texture 와 국부적인 컬러 특성을 잘 나타낸다. 색인과정 알고리즘은 영상의 크기를 정규화하고 RGB 컬러공간에서 HSV 컬러 공간으로 변환을 하여, H, S, V 각 채널에 대해 Daubechies' wavelet transform을 수행한 후 변환 영역에서 피쳐를 추출하게 된다. 색인을 위한 피쳐로 wavelet 계수와 lowest 밴드의 평균과 표준편차를 추출하였다. 효율적인 검색을 위해 검색은 2단계로 수행된다. 먼저 평균과 표준편차만을 이용한 1차 검색을 통해 2차 검색의 후보 영상들을 추출하고 2차 검색에서는 1차 검색 통과 영상들에 대해서만 wavelet 계수들을 비교하여 최종 검색 결과를 얻게 된다. 검색결과 기존의 컬러 피쳐를 이용한 방법보다 우수한 검색결과를 얻을 수 있었다.
Proceedings of the Korean Society of Precision Engineering Conference
/
2006.05a
/
pp.61-62
/
2006
A new neural network classifier is proposed for the automatic real-time surface inspection of high-speed cold steel strips having 11 different types of defects. 46 geometrical and gray-level features are extracted for the defect classification. 3241 samples of Posco's Kwangyang steel factory are used for training and testing the neural network classifier. The developed classifier produces plausible 15% error rate which is much better than 20-30% error rate of human vision inspection adopted in most of domestic steel factories.
Journal of the Korean Society for Precision Engineering
/
v.24
no.4
s.193
/
pp.76-83
/
2007
A new neural network classifier is proposed for the automatic real-time surface inspection of high-speed cold steel strips having 11 different types of defects. 46 geometrical and gray-level features are extracted for the defect classification. 3241 samples of Posco's Kwangyang steel factory are used for training and testing the neural network classifier. The developed classifier produces plausible 15% error rate which is much better than 20-30% error rate of human vision inspection adopted in most of domestic steel factories.
인간은 정보전달을 위하여 언어 이외에 동작, 표정과 같은 비언어적인 수단을 이용한다. 이러한 비언어적인 수단을 정확히 분석 할 수 있다면 인간과 컴퓨터간의 자연스럽고 지적인 인터페이스를 구축할 수 있게 된다. 본 논문은 별도의 센서를 부착하지 않은 단일 카메라 환경에서 손 형상을 입력정보로 사용하여 손 영역만을 분할한 후 자기 조직화 특징 지도(SOFM: Self Organized Feature Map) 신경망 알고리즘을 이용하여 손 형상을 인식함으로서 수화인식을 위한 보다 안정적이며 강인한 인식 시스템을 구현하고자 한다. 제안 방법으로는 피부색 정보를 이용하여 배경으로부터 손 영역만을 추출한 후 추출된 손 영역의 형상을 인식한다(전처리과정으로 모델이미지의 사이즈와 압축 및 컬러에 대한 정보를 정규화 시켰다). 또한 인식 효율을 높이기 위해 SOFM 신경망 알고리즘을 적용함으로서 보다 안정적으로 손 형상을 인식할 수 있게 되었으며, 손 형상 인식률에 대한 안전성과 정확성을 향상시킬 수 있었다. 그리고 인식된 손 형상의 의미를 텍스트로 보여줌으로서 사용자의 의사를 정확하게 전달할 수 있다.
The pole filtering concept has been successfully applied to cepstral feature normalization techniques for noise-robust speech recognition. In this paper, it is proposed to apply the pole filtering selectively only to the speech intervals, in order to further improve the recognition performance for short utterances in noisy environments. Experimental results on AURORA 2 task with clean-condition training show that the proposed selectively pole-filtered cepstral mean normalization (SPFCMN) and selectively pole-filtered cepstral mean and variance normalization (SPFCMVN) yield error rate reduction of 38.6% and 45.8%, respectively, compared to the baseline system.
일반적으로 음성 인식에서의 성능은 잡음의 영향으로 인하여 저하된다. 전화망을 통한 한국어 연속 숫자음 인식은 음성인식 분야에 있어서 어려운 영역에 속하는데, 이는 조음 현상으로 인한 인식률 저하되는 점과 전화망 채널의 영향으로 인하여 스펙트럼 포락이 왜곡되며 음성신호의 대역폭이 제한되기 때문이다. 본 논문에서는 잡음의 영향을 줄이기 위하여, 2WF(2-stage Wiener Filter) 와 SWP (SNR-dependent Waveform Processing) 그리고 CMN(Cepstrum Mean Normalization)을 사용하였다. 2WF는 음성 신호의 포만트 구조를 적게 왜곡시키면서 전체적인 가산잡음 뿐만 아니라 동적 가산잡음도 줄여준다. SWP는 음성파형에서 SNR값이 상대적으로 큰 부분을 강조하여 전체적인 SNR을 향상시킬 수 있다. 또한, CMN은 특징벡터로부터 채널잡음의 영향을 정규화하여 음성 인식 성능을 향상시킨다. 이러한 방법들을 전화망 한국어 연속 숫자음 DB를 이용하여 실험한 결과, 음성신호의 왜곡을 최소화하면서 잡음의 영향을 줄여 전화망에서의 숫자음 인식 성능을 향상시킬 수 있었다.
Journal of the Institute of Convergence Signal Processing
/
v.16
no.4
/
pp.134-138
/
2015
Heart sound is used for a basic clinical examination to check for abnormalities in the lungs and heart that can be heard with a stethoscope or phonocardiography. In this paper, we try to find an easier and non-invasive method to diagnose heart diseases using neural network classifier. The classifier has been developed for one normal heart sound and five murmurs by using Shannon entropy and conjugate scaled back propagation algorithm. The experimental results showed that the classification is possible with 1.63185e-6 of classification error.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2009.10a
/
pp.705-708
/
2009
This research describes a neural network-based phoneme segmenter for recognizing spontaneous speech. The input of the phoneme segmenter for spontaneous speech is 16th order mel-scaled FFT, normalized frame energy, ratio of energy among 0~3[KHz] band and more than 3[KHz] band. All the features are differences of two consecutive 10 [msec] frame. The main body of the segmenter is single-hidden layer MLP(Multi-Layer Perceptron) with 72 inputs, 20 hidden nodes, and one output node. The segmentation accuracy is 78% with 7.8% insertion.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.