• Title/Summary/Keyword: 특징 분류

Search Result 4,470, Processing Time 0.036 seconds

Classification of C.elegans Behavioral Phenotypes Using Shape Information (형태적 특징 정보를 이용한 C.Elegans의 개체 분류)

  • Jeon, Mi-Ra;Nah, Won;Hong, Seung-Bum;Baek, Joong-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.7C
    • /
    • pp.712-718
    • /
    • 2003
  • C.elegans are often used to study of function of gene, but it is difficult for human observation to distinguish the mutants of C.elegans. To solve this problem, the system, which can classify the mutant types automatically using the computer vision, is now studying. Tn previous work[1], we described the preprocessing method for automated-classification system. In this paper, we introduce shape features, which can be extracted from an acquisition image. We divide the feature into two categories, which are related to size and posture of the worm, and each feature is described mathematically We validate the shape information experimentally. And we use hierarchical clustering algorithm for classification. It reveals that 4 mutants of the worm, which are used in experiment, can be classified with over 90% of success rate.

Music classification system through emotion recognition based on regression model of music signal and electroencephalogram features (음악신호와 뇌파 특징의 회귀 모델 기반 감정 인식을 통한 음악 분류 시스템)

  • Lee, Ju-Hwan;Kim, Jin-Young;Jeong, Dong-Ki;Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.2
    • /
    • pp.115-121
    • /
    • 2022
  • In this paper, we propose a music classification system according to user emotions using Electroencephalogram (EEG) features that appear when listening to music. In the proposed system, the relationship between the emotional EEG features extracted from EEG signals and the auditory features extracted from music signals is learned through a deep regression neural network. The proposed system based on the regression model automatically generates EEG features mapped to the auditory characteristics of the input music, and automatically classifies music by applying these features to an attention-based deep neural network. The experimental results suggest the music classification accuracy of the proposed automatic music classification framework.

Study on the Performance of Spectral Contrast MFCC for Musical Genre Classification (스펙트럼 대비 MFCC 특징의 음악 장르 분류 성능 분석)

  • Seo, Jin-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.265-269
    • /
    • 2010
  • This paper proposes a novel spectral audio feature, spectral contrast MFCC (SCMFCC), and studies its performance on the musical genre classification. For a successful musical genre classifier, extracting features that allow direct access to the relevant genre-specific information is crucial. In this regard, the features based on the spectral contrast, which represents the relative distribution of the harmonic and non-harmonic components, have received increased attention. The proposed SCMFCC feature utilizes the spectral contrst on the mel-frequency cepstrum and thus conforms the conventional MFCC in a way more relevant for musical genre classification. By performing classification test on the widely used music DB, we compare the performance of the proposed feature with that of the previous ones.

Classification of Breast Tumor Cell Tissue Section Images Based on Wavelet Transform (Wavelet 변환에 기반한 유방 종양 세포 조직 영상의 분류)

  • 황해길;최현주;최익환;최흥국;윤혜경
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.340-342
    • /
    • 2001
  • 본 논문은 유방질환 중에서 Duct(관)에 발생하는 유방 종양을 benign(양성종양)/DCIS (Ductal Carcinoma In Situ)/NOS(Invasive ductal carcinoma)로 자동 분류하기 위한 분류방법을 제안한다. 분류기 생성에서 가장 중요한 단계인 특징 추출단계에서는 wavelet 변환을 적용하였으며, wavelet 변환의 각 depth에 따라 분류기를 생성하여, depth와 생성된 분류기의 분류 정확도와의 상관관계를 비교.분석하였다. 현미경 100배 배율과 400배 배율의 유방 질환 영상을 1, 2, 3, 4단계(depth)의 wavelet 변환을 적용한 후, 분할된 서브밴드에서 GLCM을 이용하여 질감 특징(Entropy, Energy, Contrast, Homogeneity)을 추출하여, 이 특징값들을 조합하여 판별분석에 의해 분류기(classifier)를 생성한 후, 분류 정확도를 검증하였다. Benign/DCIS/NOS를 분류하려면 최소 3단계 이상의 wavelet 변환을 적용해야 하고, 400배 배율 영상보다는 100배 배율의 영상이 더 나은 결과를 보였다.

  • PDF

Multiple Optimal Classifiers based on Speciated Evolution for Classifying DNA Microarray Data (DNA 마이크로어레이 데이터의 분류를 위한 종분화 진화 기반의 최적 다중 분류기)

  • 박찬호;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.724-726
    • /
    • 2004
  • DNA 마이크로어레이 기술의 발전은 암의 조기 발견 및 예후 예측을 가능하게 해주었으며, 이와 관련된 많은 연구가 진행 중이다. 마이크로어레이 데이터의 분류에서 관련 유전자들의 선택은 필수적이며, 유전자 선택방법은 분류기와 짝을 이루어 특징-분류기를 형성한다. 이제까지 여러 가지 특징-분류기를 사용하여 마이크로어레이 데이터를 분류해 왔지만, 알고리즘의 한계와 데이터의 결함 등으로 인하여 최적의 특징-분류기를 찾기 어려웠다. 따라서 앙상블 분류기를 이용하여 높은 분류성능을 얻는 방법이 시도되어왔으며. 최적의 것을 찾기 위하여 유전자 알고리즘이 사용되기도 했다. 본 논문에서는 이를 발전시켜 다양한 최적의 앙상블을 생성하기 위해 종분화 방법을 사용한다. 림프종 암 데이터에 대하여 leave-one-out cross-validation을 적용한 결과, 제안한 방법으로 다양한 최적해를 탐색하는 것을 확인할 수 있었다.

  • PDF

Applying distance metric learning for improvement of genre classification (장르 분류 성능 향상을 위한 거리함수 학습의 활용)

  • Jang, Dal-Won;Sin, Sa-Im;Lee, Jong-Seol;Jang, Se-Jin;Lim, Tae-Beom
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2013.11a
    • /
    • pp.36-37
    • /
    • 2013
  • 음악 장르 분류 분야에서는 다양한 특징을 모아서 사용하는 방법과 support vector machine (SVM) 분류기가 주로 사용되고 있다. 이 논문에서는 거리 함수 학습를 음악 장르 분류에 적용하여 성능 향상을 꾀한다. 여러 거리 함수 학습 방법 중 하나의 방법을 선택하고, 일반적으로 많이 사용되는 특징 셋을 활용하여 다양한 특징 셋에 대해서 적용하였을 때, 실제 성능 향상이 있는지를 알아본다. 세 종류의 특징 셋을 사용하여 실험한 결과 두 가지 특징이 같이 있는 특징 셋에 대해서만 성능 향상이 있었으며, SVM보다 높은 성능을 보이지 못 했다.

  • PDF

Analysis for River Network Classification based on Beta Distribution and Support Vector Machines (Beta Distribution 과 Support Vector Machines를 적용한 하천유역 분류 기법 개발)

  • Jung, Kichul;Shin, Ju-Yong;Um, Myoung-Jin;Park, Daeryong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.411-411
    • /
    • 2019
  • 지형학적으로 다양한 형상을 가지고 있는 하천유역은 지역적 조건에 따라 뚜렷한 특징을 나타낸다. 이러한 조건은 하천유역의 발달 및 수문학적 특징에 영향을 미친다. 금회 연구는 여러 가지 유역의 특징 중 유역을 대표할 만한 특징을 이용하여 간단하고 유용한 하천 유역 분류 기법을 제시하였다. 하천유역의 여러 특징 중 지류교차각(Tributary Junction Angle)은 유역을 분석하기 위해 많이 사용되었으며 다른 특징들과 함께 유역 구분을 위해 분석되어 왔다. 하지만, 지류교차각만 이용하여 유역 분류를 제시하는 기법은 연구되지 않았다. 하천유역 분류 기법 제시를 위해 수지형 유역, 평행형 유역, 부채형 유역, 직사각형 유역, 격자형 유역 등 5가지의 형태를 중심으로 50개의 하천유역을 사용하였고, 지류교차각의 Beta Distribution 모델을 적용하여 매개변수 추정치 산정 후 유역 분류를 위한 분석을 실시하였다. 매개변수 추정치는 각 유역 형태 구분을 위해 적용되었고, 이후 Support Vector Machines를 이용하여 하천유역 형태를 분류하도록 하였다. 분석을 통한 결과는 일반적인 통계기법과 다른 유역형태 구분 기법을 이용하여 검증하였다. 제안된 기법은 수지형, 평행형, 부채형 유역 형태들에 대하여 정확하게 분류할 수 있으며, 얻어지는 결과는 중요한 수문학적 정보 제공에 사용 될 것으로 판단된다. 금회 연구를 통해 Beta 분포형의 매개변수 추정치는 하천유역 분류 적용에 유용하게 사용 될 수 있음을 확인하였고, 하나의 주요 유역 인자로 유역 구분이 가능함을 제시하였다. 향후 연구로는 하천유역 분류를 통해 수문학적인 동질 유역을 구분하여 수문모델의 수행능력을 향상 시킬 수 있는 수문모델 분석과 개발에 적용 될 수 있을 것이다.

  • PDF

A Convolutional Neural Network Model with Weighted Combination of Multi-scale Spatial Features for Crop Classification (작물 분류를 위한 다중 규모 공간특징의 가중 결합 기반 합성곱 신경망 모델)

  • Park, Min-Gyu;Kwak, Geun-Ho;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_3
    • /
    • pp.1273-1283
    • /
    • 2019
  • This paper proposes an advanced crop classification model that combines a procedure for weighted combination of spatial features extracted from multi-scale input images with a conventional convolutional neural network (CNN) structure. The proposed model first extracts spatial features from patches with different sizes in convolution layers, and then assigns different weights to the extracted spatial features by considering feature-specific importance using squeeze-and-excitation block sets. The novelty of the model lies in its ability to extract spatial features useful for classification and account for their relative importance. A case study of crop classification with multi-temporal Landsat-8 OLI images in Illinois, USA was carried out to evaluate the classification performance of the proposed model. The impact of patch sizes on crop classification was first assessed in a single-patch model to find useful patch sizes. The classification performance of the proposed model was then compared with those of conventional two CNN models including the single-patch model and a multi-patch model without considering feature-specific weights. From the results of comparison experiments, the proposed model could alleviate misclassification patterns by considering the spatial characteristics of different crops in the study area, achieving the best classification accuracy compared to the other models. Based on the case study results, the proposed model, which can account for the relative importance of spatial features, would be effectively applied to classification of objects with different spatial characteristics, as well as crops.

Classification of Brain MRI Series by using Decision Tree (결정 트리를 이용한 뇌 MRI 시리즈 분류)

  • 김용욱;김준태;엄기현;조형제
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05d
    • /
    • pp.1087-1092
    • /
    • 2002
  • 본 논문에서는 결정 트리 학습을 이용하여 뇌 MRI 시리즈를 분류하는 시스템을 제안한다. 영상으로부터 얻을 수 있는 정보에는 두 종류가 있다. 하나는 크기, 색상, 질감, 윤곽선 등 원 영상으로부터 직접 얻을 수 있는 하위레벨(low-level) 특징들이고, 다른 하나는 특정 개체의 존재유무, 여러 부위 사이의 공간적 관계 등 분할된 영상들에 대한 해석을 통하여만 얻을 수 있는 상위레벨(high-level) 특징들이다. 영상을 의미에 따라 분류하기 위해서는 학습 및 분류가 상위레벨 특징들을 기반으로 수행되어야 한다. 제안된 시스템에서는 결정 트리 학습을 이용하여 영상을 구성하는 요소를 학습하고 분류하며 그에 따라 영상 시리즈를 대표할 수 있는 상위레벨 특징을 추출하였다. 정상, 뇌경색, 뇌종양이 있는 뇌 MRI 시리즈에 대하여 분류 실험을 수행하였으며, 그 결과를 설명 하였다.

  • PDF

A Study on Performance of ML Algorithms and Feature Extraction to detect Malware (멀웨어 검출을 위한 기계학습 알고리즘과 특징 추출에 대한 성능연구)

  • Ahn, Tae-Hyun;Park, Jae-Gyun;Kwon, Young-Man
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.1
    • /
    • pp.211-216
    • /
    • 2018
  • In this paper, we studied the way that classify whether unknown PE file is malware or not. In the classification problem of malware detection domain, feature extraction and classifier are important. For that purpose, we studied what the feature is good for classifier and the which classifier is good for the selected feature. So, we try to find the good combination of feature and classifier for detecting malware. For it, we did experiments at two step. In step one, we compared the accuracy of features using Opcode only, Win. API only, the one with both. We founded that the feature, Opcode and Win. API, is better than others. In step two, we compared AUC value of classifiers, Bernoulli Naïve Bayes, K-nearest neighbor, Support Vector Machine and Decision Tree. We founded that Decision Tree is better than others.