• Title/Summary/Keyword: 특징 변수

Search Result 1,069, Processing Time 0.034 seconds

Performance Improvement of General Regression Neural Network by Reducing Dimensionality of Independent Variables (독립변수의 차원 감소에 의한 일반회귀 신경망의 성능개선)

  • 조용현
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.6
    • /
    • pp.533-541
    • /
    • 2000
  • 본 논문에서는 독립변수들의 차원을 감소시켜 일반회귀 신경망의 성능을 개선하는 방법을 제안하였다. 제안된 방법에서는 적응적 학습 알고리즘의 주요성분분석 기법을 이용하여 독립변수 패턴의 특징을 추출하고 이를 일반회귀 신경망의 학습데이터로 이용하였다. 이는 주요성분분석 기법이 가지는 대용량의 입력 데이터를 통계적으로 독립인 특징들의 집합으로 변환시키는 속성을 살려 학습데이터의 차원을 감소시킴으로서 고차원의 학습데이터에 따른 일반회귀 신경망이 가지는 제약을 해결하기 위함이다. 제안된 기법의 일반회귀 신경망을 3개의 독립변수 패턴을 가진 암모니아 제조공정문제와 10개의 독립변수 패턴을 가진 자동차 연비문제에 각각 적용하여 시뮬레이션한 결과, 기존의 일반회귀 신경망에 의한 결과와 비교할 때 더욱 우수한 학습성능과 회귀성능이 있음을 확인할 수 있었다. 그리고 커널함수의 평활요소 설정 면에서도 우수한 특성이 있음을 확인할 수 있었다.

  • PDF

Feature Preserved Geometry Images (특징이 보호된 기하 이미지)

  • 김봉수;이행석;황준하;한규필
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04a
    • /
    • pp.898-900
    • /
    • 2004
  • 3차원 모델은 흔히 비정규(irregular connectivity) 삼각형 메쉬로 구성된다. 비정규 메쉬를 정규(completely-regular connectivity) 메쉬로 재생성라면 기하 정보를 정규적인 연결성에 상응하는 2차원 형태의 이미지로 나타낼 수 있다. 본 논문은 매개변수(parameter) 영역에서 비정규 메쉬의 특징점들로 연결된 날카로운 모서리(sharp edge)로의 특징 snapping 을 통하여 기존의 방법으로 생성된 기하 이미지보다 특징이 잘 보호된 기하 이미지 생성에 대한 방법을 제시한다. 우선 비정규 메쉬를 구성하는 정점들의 곡률을 계산한 후 매개변수 영역에서 곡률이 증가하는 방향으로 snapping을 적용하였다. 실험 결과, 본 논문에서 제시한 방법이 기존의 방법에 비해 비정규 메쉬의 특징을 보다 잘 보호할 수 있음을 확인하였다.

Face Recognition using Dimension Reduction Features based on Partial Least Squares (부분 최소제곱법 기반한 차원 축소 특징을 이용한 얼굴 인식)

  • Lee, Chang-Beom;Kim, Do-Hyang;Park, Hyuk-Ro;Baek, Jangsun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.05a
    • /
    • pp.745-748
    • /
    • 2004
  • 얼굴 이미지의 대부분은 표본의 수보다 특징 변수의 수가 많기 때문에 이러한 점을 고려한 특징 추출 방법이 필요하다. 본 논문에서는 부분 최소제곱법을 이용하여 특징 벡터의 차원을 축소하는 방법을 제안한다. 전통적인 차원 축소 방법인 주성분 분석은 클래스의 정보를 고려하지 않고 최대 변이를 가지는 성분을 추출하기 때문에, 클래스의 구분에 필요한 특징을 필수적으로 추출하지 못한다. 이에 비해, 부분 최소제곱법은 클래스 변수에 대한 정보를 포함하여 성분을 추출한다. 그러므로, 분류를 하는데 있어서는 주성분 분석에 의해 추출된 성분보다는 부분 최소제곱법에 의해 추출된 성분이 보다 더 예측적이다. 맨체스터와 ORL 얼굴 데이터베이스를 이용하여 실험한 결과, 분류와 차원 축소 측면에서 주성분 분석 방법보다는 부분 최소제곱법을 이용한 방법이 그 성능이 우수함을 알 수 있었다.

  • PDF

Fuzzy Modeling Based on Multiple Gaussian Functions (다중 가우시안 함수 기반 퍼지 모델링)

  • Hong, Chan-Young;Yoon, Tae-Sung;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2522-2524
    • /
    • 2003
  • 본 논문은 다수의 가우시안(Gaussian) 함수를 가중치 함수로 이용하여 퍼지 소속 함수의 효율적인 동정기법을 제안한다. 먼저 데이터를 가장 잘 구분하는 특징 변수를 선정하고, 이에 대한 기본 소속 함수를 가우시안 함수로 설정한 후, 다수의 가우시안 함수를 곱하여 소속 함수를 동정한다. 해당 특징 변수에 대한 소속 함수의 동정 후, 다음 우선 순위의 특징 변수를 퍼지 규칙에 첨가하여 가장 높은 정확도를 획득할 때까지 반복적으로 소속 함수를 동정한다. 이러한 방법은 데이터의 분포 성향을 소속 함수에 반영시킬 수 있을 뿐만아니라, 알고리듬의 고속 연산도 가능하다. 제안한 방법의 성능을 검증하기 위해 iris 데이터에 적용하여 모의실험의 예를 보인다.

  • PDF

Fall Recognition Algorithm Using Gravity-Weighted 3-Axis Accelerometer Data (3축 가속도 센서 데이터에 중력 방향 가중치를 사용한 낙상 인식 알고리듬)

  • Kim, Nam Ho;Yu, Yun Seop
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.254-259
    • /
    • 2013
  • A newly developed fall recognition algorithm using gravity weighted 3-axis accelerometer data as the input of HMM (Hidden Markov Model) is introduced. Five types of fall feature parameters including the sum vector magnitude(SVM) and a newly-defined gravity-weighted sum vector magnitude(GSVM) are applied to a HMM to evaluate the accuracy of fall recognition. A GSVM parameter shows the best accuracy of falls which is 100% of sensitivity and 97.96% of specificity, and comparing with SVM, the results archive more improved recognition rate, 5.2% of sensitivity and 4.5% of specificity. GSVM shows higher recognition rate than SVM due to expressing falls characteristics well, whereas SVM expresses the only momentum.

Intelligence Package Development for UT Signal Pattern Recognition and Application to Classification of Defects in Austenitic Stainless Steel Weld (UT 신호형상 인식을 위한 Intelligence Package 개발과 Austenitic Stainless Steel Welding부 결함 분류에 관한 적용 연구)

  • Lee, Kang-Yong;Kim, Joon-Seob
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.15 no.4
    • /
    • pp.531-539
    • /
    • 1996
  • The research for the classification of the artificial defects in welding parts is performed using the pattern recognition technology of ultrasonic signal. The signal pattern recognition package including the user defined function is developed to perform the digital signal processing, feature extraction, feature selection and classifier selection. The neural network classifier and the statistical classifiers such as the linear discriminant function classifier and the empirical Bayesian classifier are compared and discussed. The pattern recognition technique is applied to the classification of artificial defects such as notchs and a hole. If appropriately learned, the neural network classifier is concluded to be better than the statistical classifiers in the classification of the artificial defects.

  • PDF

Monthly Precipitation Forecast Using Genetic Algorithm (ANFIS 모형을 이용한 월강수량 예측)

  • Shin, Ju-Young;Jeong, Chang-Sam;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1181-1185
    • /
    • 2009
  • Adaptive Nuero-Fuzzy Inference System(ANFIS) 모형은 인공신경망과 퍼지모형의 특징을 가지는 모형으로 자료간의 관계가 선형이 아닌 비선형관계를 가질 경우 매우 정확한 예측 모형을 구축할 수 있는 특징이 있다. 월강수량 예측이 관측된 기상자료들과 비선형 관계에 있다고 생각되어 ANFIS 모형을 이용하여 월강수량을 예측하였다. 본 연구의 대상 지점으로는 금강유역의 대전 지점으로 선정하였다. 금강유역은 우리나라의 한가운데 위치하여 평균적인 강수형태 및 특징을 보여 좋은 실험유역으로 생각되어 선정하였다. 금강유역의 기상청에서 운영하는 지상 유인관측소 중 비교적 금강유역을 대표하고 양질의 자료가 기록되어 있다고 판단되는 대전지점을 실험지점으로 생각되어 선정하였다. 기상청 대전 유인 관측소에는 총 39년치 기상 자료가 기록되어 있다. 기상청에서는 전국 주요 도시들을 대상으로 2003년부터 월간 예보를 하고 있다. 본 연구에서는 기상청 월간예보와 기상청 대전 유인관측소에서 관측된 5년 치 기상자료를 모델의 입력자료로 구성하였다. 적절한 입력변수 조합을 구성하기 위하여 반복해법을 적용하였다. 5년 치 자료 중 절반은 학습을 시키는데 사용하였고 나머지 절반을 이용하여 모형을 검증하였다. 여러 입력변수를 이용하여 모형의 학습시킨 결과 입력변수가 3개 일 경우 가장 높은 정확도를 보였다. 입력변수가 3개로 학습 시킨 ANFIS 모형과 기상청에서 제공하는 월간예보를 비교해본 결과 ANFIS 모형을 적용하여 월 강수량을 예측하는 것이 기상청에서 제공하는 월간예보보다 높은 정확도를 보이는 것을 확인할 수 있었다.

  • PDF

Impact of Feature Positions on Focal Length Estimation of Self-Calibration (Self-calibration의 초점 거리 추정에서 특징점 위치의 영향)

  • Hong Yoo-Jung;Lee Byung-Uk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.4C
    • /
    • pp.400-406
    • /
    • 2006
  • Knowledge of camera parameters, such as position, orientation and focal length, is essential to 3D information recovery or virtual object insertion. This paper analyzes the error sensitivity of focal length due to position error of feature points which are employed for self-calibration. We verify the dependency of the focal length on the distance from the principal point to feature points with simulations, and propose a criterion for feature selection to reduce the error sensitivity.

Study on Performance Analysis of Video Retrieval Using Temporal Texture (Temporal texture를 이용한 비디오 검색의 성능분석)

  • 홍지수;김영복;김도년;조동섭
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.443-445
    • /
    • 2000
  • 모든 물체의 표면은 독특한 성질을 보유하고 있으므로, 비디오 검색에 있어 텍스처는 형상이나 색과 더불어 중요한 변수로 사용될 수 있다. 비디오 검색에 있어서 중요한 것은 어떤 영상의 특징을 올바르게 추출하고 잘 분류하여 표현하는 것이다. Temporal texture는 무한한 시공간적 범위의 복잡하고, 추상적인 움직임 패턴도 특징화시킬 수 있으므로, temporal texture 패턴을 얼마나 잘 이용할 수 있느냐는 비디오 검색의 성능에 많은 영향을 끼칠 수 있다. 본 논문은 temporal texture의 서로 다른 특징을 가진 세 가지의 모델을 선정하여 비교한다. 특히, 특징 추출의 분류가 정확하게 이루어지느냐에 초점을 맞추어서 분석하였다. 분류의 성능은 두 가지 변수 즉, 어떤 성질의 모델이며 비디오 데이터인가에 따라 달라지게 된다. 이들 모델링이 분류하기까지 걸리는 시간의 차이는 무시할 수 있을 정도의 시간차이므로 정확도를 위주로 성능을 분석했다.

  • PDF

The Modelling of Prosodic Phrasing and Pause Duration using CART (CART를 이용한 운율구 추출 및 휴지기간 모델링)

  • 이상호
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.08a
    • /
    • pp.81-86
    • /
    • 1998
  • 트리 기반 모델링 기법 중 하나인 CART 방법을 이용하여, 운율구 추출과 운율구 사이의 휴지 기간을 모델링 하고자 한다. 모델링을 위한 특징 변수들의 유효성을 실험에 앞서 알아본 후, 생성된 트리들을 해석함으로써 제안하는 특징 변수들이 효과적임을 보인다. 음성 정보를 제외한 문서 정보만을 이용하여 실험한 결과, 운율구 경계 결정 오류율은 14.46% 이었고, 휴지 기간 예측 RMSE 가 132.61 msec 이었다.

  • PDF