In this paper, we present a method on the construction of multiple-valued circuits using Reed-Muller Expansions(RME). First, we discussed the input output interconnection of multiple valued function using Perfect Shuffle techniques and Kronecker product and designed the basic cells of performing the transform matrix and the reverse transform matrix of multiple valued RME using addition circuit and multiplication circuit of GF(4). Using these basic cells and the input-output interconnection technique based on Perfect Shuffle and Kronecker product, we implemented the multiple valued logic circuit based on RME. The proposed design method of multiple valued RME is simple and very efficient to reduce addition circuits and multiplication circuits as compared with other methods for same function because of using matrix transform based on modular structures. The proposed design method of multiple valued logic circuits is simple and regular for wire routing and possess the properties of concurrency and modularity of array.
In this paper, the input-output interconnection method of the multiple-valued signal processing circuit using Perfect Shuffle technique and Kronecker product is discussed. Using this method, the circuit design method of the multiple-valued Reed-Muller Expansions (MRME) which can process the multiple-valued signal easily on finite fields GF$(p^m)$ is presented. The proposed input-output interconnection methods show that the matrix transform is an efficient and the structures are modular. The circuits of multiple-valued signal processing of MRME on GF$(p^m)$ design the basic cells to implement the transform and inverse transform matrix of MRME by using two basic gates on GF(3) and interconnect these cells by the input-output interconnection technique of the multiple-valued signal processing circuits. The proposed multiple-valued signal processing circuits that are simple and regular for wire routing and possess the properties of concurrency and modularity are suitable for VLSI.
The Journal of Korean Institute of Electromagnetic Engineering and Science
/
v.19
no.2
/
pp.130-137
/
2008
This paper presents high resolution techniques of three-dimensional(3D) scattering center extraction for a radar backscattered signal in radar target recognition. We propose a 3D pairing procedure, a new approach to estimate 3D scattering centers. This pairing procedure is more accurate and robust than the general criterion. 3D MEMP(Matrix Enhancement and Matrix Pencil) with the 3D pairing procedure first creates an autocorrelation matrix from radar backscattered field data samples. A matrix pencil method is then used to extract 3D scattering centers from the principal eigenvectors of the autocorrelation matrix. An autocorrelation matrix is constructed by the MSSP(modified spatial smoothing preprocessing) method. The observation matrix required for estimation of 3D scattering center locations is built using the sparse scanning order conception. In order to demonstrate the performance of the proposed technique, we use backscattered field data generated by ideal point scatterers.
Journal of the Korea Institute of Information and Communication Engineering
/
v.15
no.3
/
pp.613-623
/
2011
In this paper, we present a method on the construction of quinternary logic circuits using Perfect shuffle. First, we discussed the input-output interconnection of quinternary logic function using Perfect Shuffle techniques and Kronecker product, and designed the basic cells of performing the transform matrix and the reverse transform matrix of quinternary Reed-Muller expansions(QRME) using addition circuit and multiplication circuit of GF(5). Using these basic cells and the input-output interconnection technique based on Perfect Shuffle and Kronecker product, we implemented the quinternary logic circuit based on QRME. The proposed design method of QRME is simple and very efficient to reduce addition circuits and multiplication circuits as compared with other methods for same logic function because of using matrix transform based on modular structures. The proposed design method of quinternary logic circuits is simple and regular for wire routing and possess the properties of concurrency and modularity of array.
The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
/
v.8
no.1
/
pp.37-45
/
1994
A method of optimal active and reactive power control for economic operation in electrical power system is presented in this paper. The major features and techniques of this paper are as follows: 1) The method presented for obtaining the equivalent active power balance equation applying the sparse Jacobian matrix of power flow equation instead of using B constant as active power Balance equation considering transmission loss, and for determining directly optimal active power allocation without repeating calculations. 2) More reasonable and economic profit by minimizing total fuel cost of thermal power plants instead of using transmission loss as objective function of reactive Power control can be achieved. 3) Particularly in reactive power control, computing time can be considerably reduced by using Fuzzy Linear Programming instead of using conventional Linear Programming.
Journal of the Korea Institute of Information and Communication Engineering
/
v.23
no.3
/
pp.237-246
/
2019
In order to improve the accuracy of the rating prediction of the recommendation model, not only user-item rating data are used but also consider auxiliary information of item such as comments, tags, or descriptions. The traditional approaches use a word-level model of the bag-of-words for the auxiliary information. This model, however, cannot utilize the auxiliary information effectively, which leads to shallow understanding of auxiliary information. Convolution neural network (CNN) can capture and extract feature vector from auxiliary information effectively. Thus, this paper proposes character-level deep-Convolution Neural Network based matrix factorization (Char-DCNN-MF) that integrates deep CNN into matrix factorization for a novel recommendation model. Char-DCNN-MF can deeper understand auxiliary information and further enhance recommendation performance. Experiments are performed on three different real data sets, and the results show that Char-DCNN-MF performs significantly better than other comparative models.
We Propose a new feature normalization scheme based on eigenspace for achieving robust speech recognition. In general, mean and variance normalization (MVN) is Performed in cepstral domain. However, another MVN approach using eigenspace was recently introduced. in that the eigenspace normalization Procedure Performs normalization in a single eigenspace. This Procedure consists of linear PCA matrix feature transformation followed by mean and variance normalization of the transformed cepstral feature. In this method. 39 dimensional feature distribution is represented using only a single eigenspace. However it is observed to be insufficient to represent all data distribution using only a sin91e eigenvector. For more specific representation. we apply unique na independent eigenspaces to cepstra, delta and delta-delta cepstra respectively in this Paper. We also normalize training data in eigenspace and get the model from the normalized training data. Finally. a feature space rotation procedure is introduced to reduce the mismatch of training and test data distribution in noisy condition. As a result, we obtained a substantial recognition improvement over the basic eigenspace normalization.
KIPS Transactions on Software and Data Engineering
/
v.2
no.12
/
pp.889-898
/
2013
Due to the popularization of high-performance capturing equipments and the emergence of powerful image-editing softwares, it is easy to make high-quality counterfeit money. However, the probability of detecting counterfeit money to the general public is extremely low and the detection device is expensive. In this paper, a counterfeit money detection algorithm using a general purpose scanner and computer system is proposed. First, the printing features of color printers are calculated using morphological operations and gray-level co-occurrence matrix. Then, these features are used to train a support vector machine classifier. This trained classifier is applied for identifying either original or counterfeit money. In the experiment, we measured the detection rate between the original and counterfeit money. Also, the printing source was identified. The proposed algorithm was compared with the algorithm using wiener filter to identify color printing source. The accuracy for identifying counterfeit money was 91.92%. The accuracy for identifying the printing source was over 94.5%. The results support that the proposed algorithm performs better than previous researches.
KIPS Transactions on Software and Data Engineering
/
v.6
no.6
/
pp.315-320
/
2017
Estimating the correct pose of augmented objects on the real camera view efficiently is one of the most important questions in image tracking area. In computer vision, Homography is used for camera pose estimation in augmented reality system with markerless. To estimating Homography, several algorithm like SURF features which extracted from images are used. Based on extracted features, Homography is estimated. For this purpose, RANSAC algorithm is well used to estimate homography and DCS-RANSAC algorithm is researched which apply constraints dynamically based on Constraint Satisfaction Problem to improve performance. In DCS-RANSAC, however, the dataset is based on pattern of feature distribution of images manually, so this algorithm cannot classify the input image, pattern of feature distribution is not recognized in DCS-RANSAC algorithm, which lead to reduce it's performance. To improve this problem, we suggest the KCS-RANSAC algorithm using K-means clustering in CS-RANSAC to cluster the images automatically based on pattern of feature distribution and apply constraints to each image groups. The suggested algorithm cluster the images automatically and apply the constraints to each clustered image groups. The experiment result shows that our KCS-RANSAC algorithm outperformed the DCS-RANSAC algorithm in terms of speed, accuracy, and inlier rate.
Speech is much influenced by the existence of outliers which are introduced by such an unexpected happenings as additive background noise, change of speaker's utterance pattern and voice detection errors. These kinds of outliers may result in severe degradation of speaker recognition performance. In this paper, we proposed the GMM based on robust principal component analysis (RPCA-GMM) using M-estimation to solve the problems of both ouliers and high dimensionality of training feature vectors in speaker identification. Firstly, a new feature vector with reduced dimension is obtained by robust PCA obtained from M-estimation. The robust PCA transforms the original dimensional feature vector onto the reduced dimensional linear subspace that is spanned by the leading eigenvectors of the covariance matrix of feature vector. Secondly, the GMM with diagonal covariance matrix is obtained from these transformed feature vectors. We peformed speaker identification experiments to show the effectiveness of the proposed method. We compared the proposed method (RPCA-GMM) with transformed feature vectors to the PCA and the conventional GMM with diagonal matrix. Whenever the portion of outliers increases by every 2%, the proposed method maintains almost same speaker identification rate with 0.03% of little degradation, while the conventional GMM and the PCA shows much degradation of that by 0.65% and 0.55%, respectively This means that our method is more robust to the existence of outlier.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.