Journal of the Korea Society of Computer and Information
/
v.13
no.3
/
pp.99-106
/
2008
Recently, digital music retrieval is using in many fields (Web portal. audio service site etc). In existing fields, Meta data of music are used for digital music retrieval. If Meta data are not right or do not exist, it is hard to get high accurate retrieval result. Contents based information retrieval that use music itself are researched for solving upper problem. In this paper, we propose Same music recognition method using similarity measurement. Feature data of digital music are extracted from waveform of music using Simplified MFCC (Mel Frequency Cepstral Coefficient). Similarity between digital music files are measured using DTW (Dynamic time Warping) that are used in Vision and Speech recognition fields. We success all of 500 times experiment in randomly collected 1000 songs from same genre for preying of proposed same music recognition method. 500 digital music were made by mixing different compressing codec and bit-rate from 60 digital audios. We ploved that similarity measurement using DTW can recognize same music.
표면정보 기반 영상정합기법은 대상기관에서 추출된 표면정보를 기반으로 변환을 추정하여 서로 다른 영상의 전체적 형태의 유사성 정도를 최대화함으로써 정합을 수행하는 방법이다. 정합 수행에 있어 전체 객체를 가장 잘 대표하는 특정 개수의 표면점을 추출하고, 이 대표점으로부터 변환 값을 계산하는 것이 영상정합의 합리적인 최적화 단계를 위해 필수적이다. 대표점 추출결과에 따라 전체 정합의 결과가 달라지게 되므로 정합의 변환요소 값을 정확하게 구해낼 수 있는 대표점을 추출하기 위해 적절한 샘플링 기법의 선택이 요구된다. 본 연구에서는 효율적인 표면정보 기반 다중 모달리티 영상정합을 위해 계통추출법 기반 샘플링 기법과 특징점 탐지 기법 기반 샘플링 기법의 성능을 비교 분석하였다.
Nam Yun-Young;Park Jin-Kyu;Hwang Een-Jun;Kim Dong-Yoon
Proceedings of the Korean Information Science Society Conference
/
2006.06d
/
pp.346-348
/
2006
본 논문은 잎맥 특징을 이용한 식물의 잎 이미지 검색 방법을 제안한다. 식물의 검색을 위해 모양 기반의 검색방법을 사용하였으며, 잎의 외곽선 분만 아니라 내부의 잎맥 정보를 이용하여 정확율을 향상시켰다. 외곽선은 MPP(Minimum Perimeter Polygons) 알고리즘을 개선하여 표현하고, 내부의 잎맥의 특징은 CSS(Curvature Scale Space)를 개선하여 주맥과 교차점, 끝점을 추출하여 표현하였다. 특징 점들간의 관계와 거리값을 통해 가중치가 있는 그래프로 표현하고 이 값을 통해 유사도를 계산하였다. 실험에서는 식물도감에서 1000여개의 식물 잎 이미지를 추출하여 기존의 알고리즘인 Fourier Descriptor, CSSD, CCD, Moment Invariants, MPP와 비교하였다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2004.10a
/
pp.138-141
/
2004
본 논문은 EBGM(Elastic Bunch Graph Matching)기법을 이용한 얼굴인식에 대해 다룬다. 대용량 영상 정보에 대해 차원 축소를 이용한 얼굴인식 기법인 주성분기법이나 선형판별기법에서는 얼굴 영상 전체의 정보를 이용하는 반면 본 논문에서는 얼굴의 눈, 코, 입 등과 같은 얼굴 특징점에 대해 주파수와 방향각이 다른 여러 개의 가버 커널과 영상 이미지의 컨볼루션(Convolution)의 계수의 집합(Jets)을 이용한 특징 데이터를 이용한다. 하나의 얼굴 영상에 대해서는 모든 영상이 같은 크기의 특징 데이터로 표현되는 Face Graph가 생성되며, 얼굴인식 과정에서는 추출된 제트의 집합에 대해서 상호 유사도(Similarity)의 크기를 비교하여 얼굴인식을 수행한다. 본 논문에서는 기존의 EBGM방법의 Face Graph 생성 과정을 보다 간략화 한 방법을 이용하여 얼굴인식 과정에서 계산량을 줄여 속도를 개선하였다.
In this paper, a new practical implementation of a person verification system using features of longitudinal section and transection and other facial, rotation compensated 3D face image, is proposed. The approach works by finding the nose tip that has a protrusion shape on the face. In feature recognition of 3D face image, one has to take into consideration the orientated frontal posture to normalize. Next, the special points in regions, such as nose, eyes and mouth are detected. The depth of nose, the area of nose and the volume of nose based both on the 3 longitudinal section and a transection are calculated. The eye interval and mouth width are also computed. Finally, the 12 features on the face were extracted. The Ll measure for comparing two feature vectors were used, because it is simple and robust. In the experimental results, proposed method achieves recognition rate of 95.5% for the longitudinal section and transection.
Proceedings of the Korea Multimedia Society Conference
/
2003.11a
/
pp.232-235
/
2003
본 눈문에서는 표면의 에지를 잘 나타내는 웨이블릿을 이용한 3차원 얼굴 인식 알고리듬을 제안한다. 먼저 얼굴영역을 추출하고 정규화과정을 수행한다. 코는 얼굴에서 가장 높고 기준점의 역할을 하므로 반복 선택방법을 이용해서 코끝을 찾는다. 코끝 최고점을 기준으로 깊이값 20, 30, 40인 영역에 대해 웨이블릿 변환을 수행하여 얼굴마다 저주파와 고주파들을 생성하는데, 저주파를 제외한 고주파들에 대하여 히스토그램을 특징벡터로 사용하였다 유사도의 비교는 L$_1$거리함수를 사용하여 수평, 수직, 대각고주파, 그리고 이 고주파들의 유사도 비교치를 합한 합성의 경우 각각에 대하여 실험하였다. 깊이값에 따른 영역에서 고주파별로 실험한 결과, 순위 임계값이 10위를 기준으로 깊이값 30 대각고주파에서 91%가 나타났고 합성에서는 93%의 인식률이 나왔다.
본 연구에서는 캘리브레이션 박스와 같은 사전에 약속된 물체를 사용하지 않고 일반적인 환경(unstructured environment)의 컬러 스테레오 영상으로부터 특징점을 찾고, 특징점 사이의 대응관계를 사용자 개입 없이 파악하는 방법에 대해 소개한다. 또한 찾은 대응관계를 이용해 스테레오 카메라 사이의 에피폴라 기하학(epipolar geometry) 관계를 계산하여 셀프 캘리브레이션에 이용한다. 이와 유사한 연구는 많이 진행되어 왔으나 대부분의 연구가 흑백 영상에서 진행되어 왔다. 본 연구에서는 컬러 이미지의 속성을 이용해 흑백 영상을 이용할 때보다 외부 환경의 변화에 강인하며, 정밀한 대응 관계를 찾을 수 있음을 실험을 통해 보인다.
멀티미디어의 규모가 급격하게 늘어나고 있는 현재, 영화와 같은 동영상은 용량에 있어 사진과 비교했을 때 상당한 크기를 가지고 있고 그만큼 많은 정보를 담고 있다. 이렇게 많은 정보를 얻기 위해 사용자들은 많은 시간을 소비해야 한다. 이러한 비효율적인 측면의 보완을 위해 동영상의 각 프레임의 유사도를 판단하여 유사한 프레임들은 하나로 모으고, 유사하지 않은 프레임들은 구분하여 요약된 시퀀스로 보여줄 수 있는 방법이 필요하다. 이러한 관점에서 봤을 때 동영상은 시간적 순서에 따라 프레임이 배열되어 있고 인근 프레임 간에는 Coherence가 존재한다는 장점이 있다. 따라서 우리는 이러한 장점을 최대한 이용하여 동영상의 요약 시퀀스를 생성하기 위해 일차적으로 필요한 유사 프레임을 비교할 수 있는 기법을 제안한다. 제안하는 기법은 각 프레임의 공간적인 정보를 활용 할 수 있는 특징점 기반의 기법과, 각 프레임의 색 분포 정보를 활용 할 수 있는 히스토그램 기반의 기법을 Hybrid하게 적용하여 유사 프레임을 판단한다. 제안한 기법을 통해 도출한 결과를 통계학적으로 검증을 위해 널리 사용되는 Precision과 Recall을 이용하여 검증한다.
KIPS Transactions on Software and Data Engineering
/
v.7
no.3
/
pp.107-112
/
2018
In this paper, optical flow based keypoint detection and tracking technique is proposed for the collaboration between flying drone with vision system and ground robots. There are many challenging problems in target detection research using moving vision system, so we combined the improved FAST algorithm and Lucas-Kanade method for adopting the better techniques in each feature detection and optical flow motion tracking, which results in 40% higher in processing speed than previous works. Also, proposed image binarization method which is appropriate for the given marker helped to improve the marker detection accuracy. We also studied how to optimize the embedded system which is operating complex computations for intelligent functions in a very limited resources while maintaining the drone's present weight and moving speed. In a future works, we are aiming to develop collaborating smarter robots by using the techniques of learning and recognizing targets even in a complex background.
Most images are composed as union of the various objects which can describe meaning respectively. Unlike human perception, The general computer systems used for image processing analyze images based on low level features like color, texture and shape. The semantic gap between low level image features and the richness of user semantic knowledges can bring about unsatisfactory classification results from user expectation. In order to deal with this problem, we propose a semantic cue based image classification method using salient points from object of interest. Salient points are used to extract low level features from images and to link high level semantic concepts, and they represent distinct semantic information. The proposed algorithm can reduce semantic gap using salient points modeling which are used for image classification like human perception. and also it can improve classification accuracy of natural images according to their semantic concept relative to certain object information by using salient points. The experimental result shows both a high efficiency of the proposed methods and a good performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.