Kim, Hyeonwoo;Kim, Hyungjoon;Im, Dong-Hyuck;Hwang, Eenjun
Annual Conference of KIPS
/
2019.10a
/
pp.1045-1048
/
2019
최근 CCTV 사용이 보편화되면서 방범 목적으로 서비스 시설이나 공공시설에 설치되는 CCTV의 수가 급격하게 증가하고 있다. 그에 따라 CCTV를 감시하는 노동력이 부족해지는 문제가 발생하여 이를 대체하기 위해 카메라 영상을 통하여 한번 인식한 사람을 다른 시간이나 장소에서 촬영된 영상에서 다시 인식하는 사람 재인식 기술이 주목받고 있다. 또한, 이러한 사람 재인식 기술은 보안 분야뿐만 아니라 영화나 드라마와 같은 영상 컨텐츠에 적용되어 불법 복제물을 찾는 일에 사용될 수도 있다. 기존의 사람 재인식에는 이미지의 유사도를 계산하는 방법이 사용되었지만, 조명이나 카메라 각도가 달라지면 성능이 급격하게 떨어지는 문제가 있었다. 최근에는 딥러닝 기술이 발달하면서 전반적인 영상처리 분야의 성능이 향상되었고, 사람 재인식 분야 역시 딥러닝을 활용하면서 성능이 향상되었다. 하지만 딥러닝을 활용한 방법의 경우 보통 두 개의 이미지를 입력으로 사용하여 같은지 다른지를 판단하게 되므로 각 이미지의 공통점이나 차이점을 동시에 고려하기는 어려운 점이 있다. 본 논문에서는 이러한 점을 해결하기 위해 세 개의 사람 이미지를 입력으로 사용하여 특징을 추출하고, 특징 맵을 재구성하여 각 이미지의 차이점과 공통점을 동시에 고려하며 학습할 수 있는 모델을 제안한다.
Proceedings of the Korean Information Science Society Conference
/
1999.10b
/
pp.353-355
/
1999
본 논문에서는 영상의 flexible subblock을 이용하여 영상내에 물체의 이동이나, 빛의 변화, 시각점(view-point)의 변화등에 덜 민감한 영상 검색을 방법을 제안한다. 특징 값으로는 Ohta 컬러 공간으로부터 1, 2, 3차 central 모멘트 값을 추출해 내고, 쌍직교 웨이블릿 변환을 통해 고주파 영역으로부터 수직-수평 방향 성분을 추출하여 인덱스화 시킴으로써 인덱스를 위한 저장 공간을 줄이고 계산 시간을 향상시킬 수 있었다. 아울러, 2개의 특징 값을 다단계(multi-step) K-NN 방법에 적용시킴으로서 사용자가 검색하고자 하는 가장 유사한 k 개의 영상만을 사용자에게 보여 주도록 설계하였다. 본 논문에서는 제안하는 알고리즘의 우수성을 증명하기 위해 RGB 색상 공간을 그대로 적용하여 실험한 결과를 비교해 보았다. 추가적으로, 영상의 전역적인 유사성뿐만 아니라, 각 블록의 독립적인 특징 값을 이용하여 특정 블록에 대한 검색 환경도 제공하여 보다 의미있는 검색 환경을 제공하고 있다.
Face recognition has been actively studied and developed in various fields. In recent years, interest point extraction algorithms mainly used for object recognition were being applied to face recognition. The SURF(Speeded Up Robust Features) algorithm was used in this paper which was one of typical interest point extraction algorithms. Generally, the interest points extracted from human faces are less distinctive than the interest points extracted from objects due to the similar shapes of human faces. Thus, the accuracy of the face recognition using SURF tends to be low. In order to improve it, we propose a face recognition algorithm which performs interest point extraction by SURF and the Gabor wavelet transform to extract descriptors from the interest points. In the result, the proposed method shows around 23% better recognition accuracy than SURF-based conventional methods.
In this paper, we propose a low-complexity feature detection algorithm for object tracking and present hardware architecture design and implementation results for real-time processing. The existing Shi-Tomasi algorithm shows good performance in object tracking applications, but has a high computational complexity. Therefore, we propose an efficient feature detection algorithm, which can reduce the operational complexity with the similar performance to Shi-Tomasi algorithm, and present its real-time implementation results. The proposed feature detector was implemented with 1,307 logic slices, 5 DSP 48s and 86.91Kbits memory with FPGA. In addition, it can support the real-time processing of 54fps at an operating frequency of 114MHz for $1920{\times}1080FHD$ images.
Minutiae-based fingerprint identification systems use minutiae points, which cannot completely characterize local ridge structures. Further, this method requires many methods for matching two fingerprint images containing different number of minutiae points. Therefore, to represent the fired length information for one fingerprint image, the filterbank-based method was proposed as an alternative to minutiae-based fingerprint representation. However, it has two shortcomings. One shortcoming is that similar feature vectors are extracted from the different fingerprints which have the same fingerprint type. Another shortcoming is that this method has overload to reduce the rotation error in the fingerprint image acquisition. In this paper, we propose the minutia-weighted feature vector extraction method that gives more weight in extracting feature value, if the region has minutiae points. Also, we Propose new fingerprint alignment method that uses the average local orientations around the reference point. These methods improve the fingerprint system's Performance and speed, respectively. Experimental results indicate that the proposed methods can reduce the FRR of the filterbank-based fingerprint matcher by approximately 0.524% at a FAR of 0.967%, and improve the matching performance by 5% in ERR. The system speed is over 1.28 times faster.
As Carangoides ferdau was previously reported based on its underwater photograph, morphological descriptions have been incomplete up to the presence in Korea. On the base of two samples collected at the coast of Jeju island, morphological characters of C. ferdau are described in detail. This species is characterized by having the forepart of second dorsal fin much prolonged, 7~8 transverse dark bands on body, and snout length almost equal to eye diameter. It is morphologically very similar to C. orthogroammus, but is easily distinguished in having transverse dark bands instead of yellow spot on the body of C. orthogroammus. Phylogenetic relationships based on the mitochondrial cytochrome b (1,141 base pairs) sequences shows that C. ferdau is closely related to C. orthogroammus, and C. dinema also has a sister group relationship with C. ablongus. Both genetic distances (p-distances) are 8.2%, respectively.
In this paper, we propose a surface-based registration using a gaussian weighted distance map for PET-CT brain image fusion. Our method is composed of three main steps: the extraction of feature points, the generation of gaussian weighted distance map, and the measure of similarities based on weight. First, we segment head using the inverse region growing and remove noise segmented with head using region growing-based labeling in PET and CT images, respectively. And then, we extract the feature points of the head using sharpening filter. Second, a gaussian weighted distance map is generated from the feature points in CT images. Thus it leads feature points to robustly converge on the optimal location in a large geometrical displacement. Third, weight-based cross-correlation searches for the optimal location using a gaussian weighted distance map of CT images corresponding to the feature points extracted from PET images. In our experiment, we generate software phantom dataset for evaluating accuracy and robustness of our method, and use clinical dataset for computation time and visual inspection. The accuracy test is performed by evaluating root-mean-square-error using arbitrary transformed software phantom dataset. The robustness test is evaluated whether weight-based cross-correlation achieves maximum at optimal location in software phantom dataset with a large geometrical displacement and noise. Experimental results showed that our method gives more accuracy and robust convergence than the conventional surface-based registration.
Kim, Hyoung-Geun;Park, Sung-Kyu;Song, Chull;Choi, Kap-Seok
The Journal of Korean Institute of Communications and Information Sciences
/
v.17
no.3
/
pp.197-205
/
1992
In this paper object recognition using neural network is studied. The recognition is accomplished by matching linear line segments which are formed by local features extracted from the curvature points. Since there is similarities among segments. The boundary of models is not distinct in feature space. Due to these indistinctness the ambiguity of recognition occurs, and the recognition rate becomes degraded according to the limitation of boundary decision capability of neural network for similar of features. Object recognition and to improve recognition rate. Local features are used to represent the object effectively. The validity of the object recognition system is demonstrated by experiments for the occluded and varied objects.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.46
no.2
/
pp.57-64
/
2009
This paper presents the hardware implementation of the pyramidal KLT(Kanade-Lucas-Tomasi) feature tracker. Because of its high computational complexity, it is not easy to implement a real-time KLT feature tracker using general-purpose processors. A hardware implementation of the pyramidal KLT feature tracker using FPGA(Field Programmable Gate Array) is described in this paper with emphasis on 1) adaptive adjustment of threshold in feature extraction under diverse lighting conditions, and 2) modification of the tracking algorithm to accomodate parallel processing and to overcome memory constraints such as capacity and bandwidth limitation. The effectiveness of the implementation was evaluated over ones produced by its software implementation. The throughput of the FPGA-based tracker was 30 frames/sec for video images with size of $720{\times}480$.
Recently, many Earth observation optical satellites have been developed, as their demands were increasing. Therefore, a rapid preprocessing of satellites became one of the most important problem for an active utilization of satellite images. Satellite image matching is a technique in which two images are transformed and represented in one specific coordinate system. This technique is used for aligning different bands or correcting of relative positions error between two satellite images. In this paper, we propose an automatic image matching method among satellite images with different ground sampling distances (GSDs). Our method is based on improved feature matching and robust estimation of transformation between satellite images. The proposed method consists of five processes: calculation of overlapping area, improved feature detection, feature matching, robust estimation of transformation, and image resampling. For feature detection, we extract overlapping areas and resample them to equalize their GSDs. For feature matching, we used Oriented FAST and rotated BRIEF (ORB) to improve matching performance. We performed image registration experiments with images KOMPSAT-3A and RapidEye. The performance verification of the proposed method was checked in qualitative and quantitative methods. The reprojection errors of image matching were in the range of 1.277 to 1.608 pixels accuracy with respect to the GSD of RapidEye images. Finally, we confirmed the possibility of satellite image matching with heterogeneous GSDs through the proposed method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.