• 제목/요약/키워드: 특징점매칭

검색결과 232건 처리시간 0.026초

지문 인식을 위한 효율적인 1:N 매칭 방법 (Efficient 1:N Matching Scheme for Fingerprint Identification)

  • 정순원
    • 전자공학회논문지CI
    • /
    • 제45권5호
    • /
    • pp.173-179
    • /
    • 2008
  • 본 논문에서는 지문 인식에 있어서 매칭 시간을 줄일 수 있는 효율적인 매칭 방법을 제안한다. 통상 지문의 특징점을 이용하여 지문 매칭을 수행하는 경우, 특징점간의 기하학적 유사성을 분석하여 두 지문의 매칭 점수를 계산한다. 이러한 기하학적 유사도를 계산하기 위해서는, 하나의 지문 데이터를 기준으로 다른 하나의 지문 데이터를 미리 정렬하는 과정이 필요하며, 정렬 결과에 따라 두 지문의 유사도가 달라지므로 통상의 지문 매칭에 있어서는 양방향 매칭을 통하여 최종 매칭 점수를 구한다. 양방향 매칭의 경우 단방향 매칭에 비하여 매칭 신뢰도는 높아지나 매칭에 걸리는 시간이 단방향 매칭에 비해 두 배로 걸린다. 이 문제를 해결하기 위하여, 본 논문에서는 대규모 지문 데이터 베이스에 대한 양방향 매칭 점수의 분포를 구하고, 이를 기초로 효율적인 1:N 지문 매칭방법을 제안하였다. 실험 결과는 이러한 방법이 유용함을 보여준다.

표정변화에 따른 얼굴 표정요소의 특징점 추적 (Tracking of Facial Feature Points related to Facial Expressions)

  • 최명근;정현숙;신영숙;이일병
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 가을 학술발표논문집 Vol.27 No.2 (2)
    • /
    • pp.425-427
    • /
    • 2000
  • 얼굴 표정은 사람의 감정을 표현함과 동시에 그것을 이해할 수 있는 중요한 수단이다. 최근 이러한 얼굴 표정의 자동인식과 추적을 위한 연구가 많이 진행되고 있다. 본 연구에서는 대략적인 얼굴영역을 설정하여 얼굴의 표정을 나타내는 표정요소들을 찾아낸 후, 각 요소의 특징점을 추출하고 추적하는 방법을 제시한다. 제안하는 시스템의 개요는 입력영상의 첫 프레임에서 얼굴영역 및 특징점을 찾고, 연속되는 프레임에서 반복적으로 이를 추적한다. 특징점 추출과 추적에는 템플릿 매칭과 Canny 경계선 검출기, Gabor 웨이블릿 변환을 사용하였다.

  • PDF

중간 시점 영상 생성 기술 설계 및 구현 (Design and implementation of interpolated view video)

  • 이의상;박성환;김준식;김상일;김규헌
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2018년도 하계학술대회
    • /
    • pp.313-316
    • /
    • 2018
  • 최근 미디어의 생성 및 소비 기술의 발전으로 몰입도 있는 콘텐츠에 대한 수요가 증가하고 있다. View Interpolation 기술은 두 개의 좌/우 영상을 기반으로 하여 두 영상의 중간 시점에 해당하는 영상을 생성해내는 기술이다. 먼저 Depth Hole Filling Module을 이용하여 좌/우 영상 및 그에 대응하는 깊이 지도를 입력으로 받아 깊이 지도에 존재하는 오류를 검출하고, 보정한다. 깊이 지도의 오류 보정이 완료되면, 해당 데이터를 각각 Feature Matching Module 및 Layer Dividing Module로 전달한다. Feature Matching Module은 실사 영상 내의 특징점들을 검출하고, 두 영상 내 특징점을 매칭하는 역할을 수행하며, Layer Dividing Module은 깊이 값을 기반으로 영상의 Layer를 분할한다. Feature Matching Module에서 특징점의 매칭이 완료되면, 특징점의 영상 내 좌표 및 해당 좌표에서의 깊이 값을 Distance Estimating Module로 전달한다. Distance Estimating Module은 전달받은 특징점의 좌표 및 해당 좌표에서의 깊이 값을 기반으로 전체 깊이 값에서의 이동도를 계산한다. 이와 같이 이동도의 계산 및 Layer 분할이 완료되면, 각 Layer를 이동도에 기반하여 이동시키고, 이동된 Layer들을 포개어 배치함으로써 View interpolation을 완성한다.

  • PDF

크기와 회전 변화를 고려한 특징 기반 고속 영상 정합 기법 (Feature-Based High Speed Image Registration With Rotation and Scale Change)

  • 배기태;김송국;이칠우
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2006년도 학술대회 1부
    • /
    • pp.1361-1366
    • /
    • 2006
  • 본 논문에서는 제약되지 않은 카메라에서 얻어진 회전과 크기 변화를 가진 영상들을 특징 기반의 보로노이 거리 매칭 방법을 이용하여 고속으로 합성 하는 기법에 관해 기술한다. 기존의 특징점 기반 매칭 기법들이 사람의 개입에 의해 영상을 정합하거나, 크기나 회전 변화를 고려하지 않은 형태의 영상들을 처리하는 것과 달리 회전이나 크기변화요소가 포함된 입력영상들을 사람의 개입이 없이 자동으로 정확한 중첩영역을 빠르게 검색하는 방법을 제안한다. 제안된 방법은 우선 영상내의 특징 점들의 위상 정보와 특징 점들 사이의 거리 정보를 가지는 보로노이 거리 정합법을 통해 대응점을 구하고, 찾아진 대응 쌍들을 이용하여 2차원 투영의 초기 변환행렬을 구한다. 다음으로 비선형 이승오차 최적화 알고리즘을 이용하여 최적의 변환 행렬을 구한 후, 마지막으로 구해진 변환 행렬을 이용하여 영상을 합성한다. 실험결과를 통해 본 논문에서 제안한 방법의 효율성을 보인다.

  • PDF

이미지 기반 실시간 차량 측위를 위한 선분 매칭 프레임워크 (Line Segments Matching Framework for Image Based Real-Time Vehicle Localization)

  • 최강혁
    • 한국ITS학회 논문지
    • /
    • 제21권2호
    • /
    • pp.132-151
    • /
    • 2022
  • 차량 측위 기술은 차량의 정확한 위치 정보를 제공한다는 점에서 자율주행을 위한 핵심 기술 중 하나로 평가되고 있다. 이미지 기반의 측위 기술은 위치 정보를 효율적으로 제공할 수 있을 것으로 판단되어 다양한 관련 연구가 진행되고 있다. 하지만, 기존 특징점 또는 차선 정보를 이용한 이미지 기반 측위 방법론은 도로 및 운행 환경에 측위 정확도가 큰 영향을 받을 수 있다는 한계가 있다. 선분 매칭은 특징점에 비하여 텍스쳐 반복에 강건하고 주변 환경 전체에서 추출된 선분을 활용하기 때문에 기존 방법론의 단점을 해결할 수 있다. 하지만, 차량 운행환경을 대상으로 한 선분 매칭 방법론을 다루는 연구는 거의 진행된 바 없다. 따라서 본 연구에서는 정확한 차량 측위 지원을 위한 선분 매칭 프레임워크를 제안한다. 또한 도로 주행 환경에서의 알고리즘 성능 비교 분석을 통하여 최적 선분 매칭 알고리즘을 결정하였다. 최종적으로 제안된 프레임워크는 선분 추출, 병합, 중첩 영역 탐지 및 MSLD 기반 선분 매칭의 4단계로 구성되었다. 제안된 프레임워크는 차량의 속도, 운행 방식, 주변 환경에 상관없이 차량 측위에 충분한 수준의 선분 매칭을 안정적으로 수행하였다.

무마커 추적의 정확도 향상을 위한 이상점 제거 (Outlier Removal to Improve Accuracy for Markerless Tracking)

  • 배병조;전영준;박종승
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 추계학술발표대회
    • /
    • pp.399-400
    • /
    • 2009
  • 무마커 기반 증강현실 응용에서 빠르고 정확한 무마커 추적이 수행되어야 한다. 무마커 추적은 등록된 패턴의 특징점들과 입력 영상에서의 특징점들의 매칭을 통하여 수행된다. 매칭에서 이상점은 시차를 크게 유발시키는 요인이 되므로 정확도 향상을 위해서는 이상점을 제거해야 한다. 본 논문에서는 무마커 추적의 정확도 향상을 위한 이상점 제거 방식을 제안한다. 무마커 추적에서 사용되는 SURF 알고리즘을 사용하여 실영상을 캡처하여 실험하였고 정확도 및 실행시간을 비교하였다.

AR환경에서 특징 포인트를 효율적으로 매칭하기 위한 실린더 기반의 각도 보간 (Cylinder-based Angular Interpolation to Efficiently Feature Point Matching in AR Environment)

  • 문예린;김종현
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제65차 동계학술대회논문집 30권1호
    • /
    • pp.365-368
    • /
    • 2022
  • 본 논문에서는 가상 물체를 현실과 오차 없이 정확하게 증강 시켜야 하는 상황에서 특징 포인트를 이용하여 효율적으로 매칭하기 위한 실린더 기반의 각도 보간 기법을 제안한다. 증강현실에서 활용되는 대표적인 객체를 증강하는 방법은 특징 포인트들을 트래킹하여 찾아낸 후, RANSAC 알고리즘을 기반으로 포인트 셋에서 바닥, 벽과 같이 하나의 평면을 구성하고 그 위에 객체를 증강한다. 이 방법은 평면을 이용하기 때문에 계산량이 적지만, 증강 위치에 대한 오차가 존재하기 때문에 때때로 잘못된 위치에 객체가 배치되는 경우가 발생한다. 특히, 의료시설, 도로 공사에서 증강 현실을 사용했을 때에 증강된 가상물체의 위치, 크기 등이 현실에서 작은 오차라도 어긋날 경우 크게 사고가 발생할 수 있다. 본 논문에서는 평면 생성 없이 특징 포인트만을 이용하여 효율적으로 매칭 할 수 있는 실린더 기반의 각도 보간을 이용하여 정확하게 객체를 증강할 수 있는 결과를 보여준다.

  • PDF

Modified SIFT와 블록프로세싱을 이용한 적외선과 광학 위성영상의 자동정합기법 (Automatic Registration Method for EO/IR Satellite Image Using Modified SIFT and Block-Processing)

  • 이강훈;최태선
    • 한국정보전자통신기술학회논문지
    • /
    • 제4권3호
    • /
    • pp.174-181
    • /
    • 2011
  • 본 논문에서는 적외선 위성영상과 광학 위성영상을 위한 정합방법을 제안하였다. 적외선 영상은 물체에서 방사하는 열에너지를 측정한 것으로, 광학 영상과는 다른 정보를 보여주는 장점으로 많은 분야에 응용된다. 하지만 적외선 영상은 대비가 광학 영상에 비해 낮아, 영상 정합을 위한 특징점 추출 및 매칭을 하기가 어렵다. 이를 극복하기 위해, Modifed SIFT(Scale Invariant Feature Transform)를 사용하여 특징점을 추출 및 매칭하였다. 또한 특징점의 상대적 변별력을 증가시키기 위해, 영상을 블록화해서 Modified SIFT와 RANSAC (RANdom SAample Concensus)을 적용하였다. 마지막으로 오매칭이 있는 블록의 특징점을 제거하기 위해, 각 블록에서 추출된 특징점을 원 영상의 좌표계로 통합해 RANSAC을 다시 한 번 적용하였다. 실험에 사용된 적외선 영상의 파장대역은 3~5um이며, 실험결과 제안된 방법은 적외선과 광학 영상정합에 강인한 성능을 보였다.

실시간 얼굴 방향성 추정을 위한 효율적인 얼굴 특성 검출과 추적의 결합방법 (A Hybrid Approach of Efficient Facial Feature Detection and Tracking for Real-time Face Direction Estimation)

  • 김웅기;전준철
    • 인터넷정보학회논문지
    • /
    • 제14권6호
    • /
    • pp.117-124
    • /
    • 2013
  • 본 논문에서는 실시간으로 입력되는 비디오 영상으로부터 사용자의 얼굴 방향을 효율적으로 추정하는 새로운 방법을 제안하였다. 이를 위하여 입력 영상으로부터 외부조명의 변화에 덜 민감한 Haar-like 특성을 이용하여 얼굴영역의 검출을 수행하고 검출 된 얼굴영역 내에서 양쪽 눈, 코, 입 등의 주요 특성을 검출한다. 이 후 실시간으로 매 프레임마다 광류를 이용해 검출된 특징 점을 추적하게 되며, 추적된 특징 점을 이용해 얼굴의 방향성 추정한다. 일반적으로 광류를 이용한 특징 추적에서 발생할 수 있는 특징점의 좌표가 유실되어 잘못된 특징점을 추적하게 되는 상황을 방지하기 위하여 검출된 특징점의 템플릿 매칭(template matching)을 사용해 추적중인 특징점의 유효성을 실시간 판단하고, 그 결과에 따라 얼굴 특징 점들을 다시 검출하거나, 추적을 지속하여 얼굴의 방향성을 추정을 가능하게 한다. 탬플릿 매칭은 특징검출 단계에서 추출된 좌우 눈, 코끝 그리고 입의 위치 등 4가지 정보를 저장한 후 얼굴포즈 측정에 있어 광류에의해 추적중인 해당 특징점들 간의 유사도를 비교하여 유사도가 임계치를 벗어 날 경우 새로이 특징점을 찾아내는 작업을 수행하여 정보를 갱신한다. 제안된 방법을 통해 얼굴의 특성 추출을 위한 특성 검출과정과 검출된 특징을 지속적으로 보완하는 추적과정을 자동적으로 상호 결합하여 안정적으로 실시간에 얼굴 방향성 추정 할 수 있었다. 실험을 통하여 제안된 방법이 효과적으로 얼굴의 포즈를 측정할 수 있음을 입증하였다.

PCA기반 검색 축소 기법을 이용한 SURF 매칭 속도 개선 (Speed Improvement of SURF Matching Algorithm Using Reduction of Searching Range Based on PCA)

  • 김원규;강동중
    • 한국멀티미디어학회논문지
    • /
    • 제16권7호
    • /
    • pp.820-828
    • /
    • 2013
  • 영상에서 임의의 점에 대한 고유한 특징을 계산하는 알고리즘은 파노라마 영상의 제작, 스테레오 영상의 획득, 물체 인식, 이미지 분석 등에 다양하게 사용되는 중요한 요소이다. 일반적으로 어떤 점의 특징은 스칼라 형태가 아닌 벡터형태로 나타나게 되는데, 무수히 많은 특징 점들을 서로 비교하는 작업은 매우 많은 계산량을 요구한다. 본 연구에서는 영상의 특징점 계산에 SURF(speeded up robust features)를 이용하였고, 이미지로부터 추출된 특징을 PCA(principal component analysis)기법을 이용하여 벡터의 차원을 축소하여 연결리스트 자료구조에 정렬한 다음 특징을 비교하는 기법을 제안한다. 제안된 특징의 비교 방법을 적용할 경우 기존 방법의 매칭 정확도는 유지한 상태에서 계산시간을 줄일 수 있는 것을 실험을 통하여 확인하였다.