• Title/Summary/Keyword: 특징점매칭

Search Result 232, Processing Time 0.024 seconds

3D Facial Model Expression Creation with Head Motion (얼굴 움직임이 결합된 3차원 얼굴 모델의 표정 생성)

  • Kwon, Oh-Ryun;Chun, Jun-Chul;Min, Kyong-Pil
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.1012-1018
    • /
    • 2007
  • 본 논문에서는 비전 기반 3차원 얼굴 모델의 자동 표정 생성 시스템을 제안한다. 기존의 3차원 얼굴 애니메이션에 관한 연구는 얼굴의 움직임을 나타내는 모션 추정을 배제한 얼굴 표정 생성에 초점을 맞추고 있으며 얼굴 모션 추정과 표정 제어에 관한 연구는 독립적으로 이루어지고 있다. 제안하는 얼굴 모델의 표정 생성 시스템은 크게 얼굴 검출, 얼굴 모션 추정, 표정 제어로 구성되어 있다. 얼굴 검출 방법으로는 얼굴 후보 영역 검출과 얼굴 영역 검출 과정으로 구성된다. HT 컬러 모델을 이용하며 얼굴의 후보 영역을 검출하며 얼굴 후보 영역으로부터 PCA 변환과 템플릿 매칭을 통해 얼굴 영역을 검출하게 된다. 검출된 얼굴 영역으로부터 얼굴 모션 추정과 얼굴 표정 제어를 수행한다. 3차원 실린더 모델의 투영과 LK 알고리즘을 이용하여 얼굴의 모션을 추정하며 추정된 결과를 3차원 얼굴 모델에 적용한다. 또한 영상 보정을 통해 강인한 모션 추정을 할 수 있다. 얼굴 모델의 표정을 생성하기 위해 특징점 기반의 얼굴 모델 표정 생성 방법을 적용하며 12개의 얼굴 특징점으로부터 얼굴 모델의 표정을 생성한다. 얼굴의 구조적 정보와 템플릿 매칭을 이용하여 눈썹, 눈, 입 주위의 얼굴 특징점을 검출하며 LK 알고리즘을 이용하여 특징점을 추적(Tracking)한다. 추적된 특징점의 위치는 얼굴의 모션 정보와 표정 정보의 조합으로 이루어져있기 때문에 기하학적 변환을 이용하여 얼굴의 방향이 정면이었을 경우의 특징점의 변위인 애니메이션 매개변수를 획득한다. 애니메이션 매개변수로부터 얼굴 모델의 제어점을 이동시키며 주위의 정점들은 RBF 보간법을 통해 변형한다. 변형된 얼굴 모델로부터 얼굴 표정을 생성하며 모션 추정 결과를 모델에 적용함으로써 얼굴 모션 정보가 결합된 3차원 얼굴 모델의 표정을 생성한다.

  • PDF

Error Correction of Interested Points Tracking for Improving Registration Accuracy of Aerial Image Sequences (항공연속영상 등록 정확도 향상을 위한 특징점추적 오류검정)

  • Sukhee, Ochirbat;Yoo, Hwan-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.93-97
    • /
    • 2010
  • This paper presents the improved KLT(Kanade-Lucas-Tomasi) of registration of Image sequence captured by camera mounted on unmanned helicopter assuming without camera attitude information. It consists of following procedures for the proposed image registration. The initial interested points are detected by characteristic curve matching via dynamic programming which has been used for detecting and tracking corner points thorough image sequence. Outliers of tracked points are then removed by using Random Sample And Consensus(RANSAC) robust estimation and all remained corner points are classified as inliers by homography algorithm. The rectified images are then resampled by bilinear interpolation. Experiment shows that our method can make the suitable registration of image sequence with large motion.

Building Retrieval System using feature point extraction and Brute-Force Matcher (특징점 추출과 Brute-Force Matcher를 활용한 건물 검색 시스템)

  • Lee, Areaum;Hong, Enry;Son, Sangmin;Ko, ByoungChul
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.328-329
    • /
    • 2020
  • 처음 방문하는 도시에서 건물의 외형만을 보고 목적지를 찾는 것은 매우 어려운 일이다. 따라서 본 연구에서는 스마트폰 카메라로부터 촬영된 영상에서 특징점을 추출하고 이를 이미 데이터베이스에 저장된 영상과 매칭하는 작업을 통해 해당 건물의 이름이 무엇인지 알려주는 시스템을 개발하였다. Oriented fast and rotated brief 알고리즘을 이용하여 크기 변화, 회전 등에 강인한 특징점을 추출하였고 알고리즘과 Brute-Force Matcher와 K-Nearest Neighbor 방법을 이용하여 특징점을 매칭하였다. 제안된 시스템은 실제 스마트폰으로 촬영된 영상을 데이터베이스에 연동하여 실험한 결과 90% 이상의 정확도를 보여 주었다.

  • PDF

On-line signature verification method using local partition matching (구간 분할 매칭에 의한 온라인 서명 검증 기법)

  • 류상연;이대종;이석종;전명근
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.169-172
    • /
    • 2003
  • 본 논문에서는 기존의 분절 단위 비교방법에서 참조서명과 비교서명간에 분할점 개수와 위치에 대한 불일치 문제를 개선하기 위해 구간 분할 매칭 방법을 제안한다. 제안된 분할방법은 시간에 대한 x와 y좌표 상에서 서명마다 변하지 않는 특징점을 구간 분할점으로 선택하여 구간별로 매칭시킴으로서 분절의 안정적인 분할을 통해 인식률을 높이고자 한다. 실험 결과에서 진서명과 위조서명을 포함한 기타서명에 대해 FAR이 0.06%일 때 FRR 1.25%의 오류율을 확인하였으며 FAR이 0%일 때의 평균인식율이 98.7%를 보임으로써 제안한 서명 검증 기법이 우수함을 확인 할 수 있었다.

  • PDF

Natural Feature Tracking Using Optical Flow On Mobile Devices (광류 추적 기법을 사용한 모바일 기기에서의 자연 특징 추적)

  • Bae, Byeong-Jo;Park, Jong-Seung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.04a
    • /
    • pp.562-565
    • /
    • 2010
  • 시각기반 증강현실 시스템의 구현을 위해서는 입력되는 카메라영상의 프레임을 매번 특징점을 추출하고 패턴 매칭 과정을 반복하는 것은 저 사양의 모바일 기기에서는 적합하지 않다. 본 논문에서는 이러한 문제점을 해결 하고자 카메라영상에서 패턴이 한번 인식되게 되면 그 이후의 영상에 대해서는 패턴 인식과정을 생략하고 이전 영상에서 매칭된 특징점을 광류 기반 추적기법을 사용하여 추적하도록 한다. 또한 패턴 추적 절차의 수행 중 추적이 실패하여 생기는 특징점 소실 문제는 정확한 호모그래피 행렬과 카메라 자세 추정을 어렵게 하는데 이러한 문제를 해결하도록 하는 패턴 추적의 성공 또는 실패는 판단하는 기준을 세워 모바일 기기에서 빠르게 동작하도록 하는 광류 추적 기법을 사용한 자연 특징 추적 기반 증강현실 시스템을 제안한다.

Deep Learning-based Keypoint Filtering for Remote Sensing Image Registration (원격 탐사 영상 정합을 위한 딥러닝 기반 특징점 필터링)

  • Sung, Jun-Young;Lee, Woo-Ju;Oh, Seoung-Jun
    • Journal of Broadcast Engineering
    • /
    • v.26 no.1
    • /
    • pp.26-38
    • /
    • 2021
  • In this paper, DLKF (Deep Learning Keypoint Filtering), the deep learning-based keypoint filtering method for the rapidization of the image registration method for remote sensing images is proposed. The complexity of the conventional feature-based image registration method arises during the feature matching step. To reduce this complexity, this paper proposes to filter only the keypoints detected in the artificial structure among the keypoints detected in the keypoint detector by ensuring that the feature matching is matched with the keypoints detected in the artificial structure of the image. For reducing the number of keypoints points as preserving essential keypoints, we preserve keypoints adjacent to the boundaries of the artificial structure, and use reduced images, and crop image patches overlapping to eliminate noise from the patch boundary as a result of the image segmentation method. the proposed method improves the speed and accuracy of registration. To verify the performance of DLKF, the speed and accuracy of the conventional keypoints extraction method were compared using the remote sensing image of KOMPSAT-3 satellite. Based on the SIFT-based registration method, which is commonly used in households, the SURF-based registration method, which improved the speed of the SIFT method, improved the speed by 2.6 times while reducing the number of keypoints by about 18%, but the accuracy decreased from 3.42 to 5.43. Became. However, when the proposed method, DLKF, was used, the number of keypoints was reduced by about 82%, improving the speed by about 20.5 times, while reducing the accuracy to 4.51.

pretreatment process shortening of fingerprint recognition algorithm (지문 인식의 전처리 과정 단축에 관한 연구)

  • Kim, Sang-Hyun;Do, Jae-Su
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.04a
    • /
    • pp.729-732
    • /
    • 2002
  • 본 논문에서는 대부분의 지문 인식 알고리즘에서 전처리에 해당하는 부분인 이미지 세선화에 관한 연구이다. 기존의 알고리즘을 보면 지운 매칭을 하기 전에 이미지 이진화와 세선화, 방향성 추출, 특징점 추물을 거친 후에 지문의 매칭이 이루어지는 단계이다. 이런 단계를 줄이기 위해 본 논문에서는 세선화 과정에서 기존의 알고리즘을 쓰지않고 융선을 추적해 나가는 방법으로 세선화를 함과 동시에 방향성 추출과 특징점 추출을 함께 해 나갈 수 있는 방향을 제시하고 있다. 이렇게 됨으로써 인식 시간을 단축할 수 있다.

  • PDF

pretreatment process shortening of fingerprint recognition algorithm (지문 인식의 전처리 과정 단축 알고리즘의 제안)

  • 김상현;도재수
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05c
    • /
    • pp.277-281
    • /
    • 2002
  • 본 논문에서는 '지문 인식의 전처리 과정 단축에 관한 연구'의 알고리즘의 구현에 대한 내용을 언급했으며, 향우 보완에 대한 내용을 다루고 있다[6]. 기존의 알고리즘을 보면 지문 매칭을 하기 전에 이미지 이진화와 세선화, 방향성 추출, 특징점 추출을 거친 후에 지문의 매칭이 이루어지는 단계이다. 이런 단계를 줄이기 위해 논문에서는 세선화 과정에서 기존의 알고리즘을 쓰지 않고 융선을 추적해 나가는 방법으로 세선화를 함과 동시에 방향성 추출과 특징점 추출을 함께 해 나갈 수 있는 방향을 제시하고 있다. 이렇게 됨으로써 인식 시간을 단축 할 수 있다.

  • PDF

Improving Performance of SIFT Using Color Ratio (색상비율을 이용한 SIFT 성능향상)

  • Bo Hyuck An;Jong Leul Chung;Byung-Uk Choi
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.164-167
    • /
    • 2008
  • 효과적이고 정확한 물체인식은 컴퓨터 비전 연구 분야에 있어 매우 중요한 부분이다. 조명, 카메라 회전등의 외부환경의 변화에 의해 서로 다르게 획득되는 영상에 대해서도 강인하도록 동일한 특징점을 추출하고 매칭할 수 있는 방법으로 SIFT(Scale Invariant Feature Transform) 매칭이 많이 사용되어 왔다. 그러나 기존의 SIFT기술자는 특징점 주변의 그레이만을 이용하여 기술하기 때문에 물체의 그레이정보가 유사하며 색상이 다르더라도 그레이정보만 유사할 경우에도 매칭되는 단점이 있다. 이러한 문제점을 개선하기 위하여 본 연구에서는 기본영역가 확장영역의 색상 히스토그램에 기반 한 기술자를 추가하여 오매칭에 대한 인식 성능을 향상 시키는 방법을 제안한다.

Disparity estimation based on edge fiducial points and adaptive window (경계선의 특정 기준점과 적응적 윈도우를 기반으로 한 변위 추정)

  • 노윤향;고병철;변혜란;유지상
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.559-561
    • /
    • 2001
  • 본 논문에서는 스테레오 영상으로부터 변위를 추정할 수 있는 다양한 방법들 중 특정 기반 방식과 영역 기반 방식의 각각의 장점들을 살리고 단점들을 보완하기 위한 방법은 제안한다. 영상의 경계선을 이루는 특징점들은 전체 영상의 5% 내외의 소수로 추출되면서도 많은 양의 영상 정보를 가지고 있으므로, 이 점들에 대해 일정한 매칭 과정을 통해 대응점을 구하고, 이 중 90% 이상의 정확성 매칭 확률을 가진 대응점들을 영상으로 기준점으로 설정한다. 그리고 이러한 기준점 이외의 점들에 대해서는 추출된 기준점들의 순서에 맞추어 Ordering Constraint를 적용시키고 기준점에 따라 블록의 크기가 달라지는 영역 기반 방식을 적용하여 조밀한 변위를 추정하였다. 이렇게 함으로써 영역 기반 방식과 특징 기반 방식의 각각의 장점들을 이용하면서도 특정기반 방식의 문제점인 보간법 문제를 해결하였고, 또한 블록의 크기 따라 계산 시간과 정합 오차가 많이 좌우되는 영역 기반 방식의 단점들을 해결하였다. 또한 기준점을 이용하여 Ordering constraint 기반하에 영역 정보를 이용하므로 좀 더 올바른 순서 조건에 맞추어 대응점을 찾을 수 있고 또한 폐쇄 영역 부분도 쉽게 찾을 수 있었다.

  • PDF