Journal of the Korea Academia-Industrial cooperation Society
/
제15권3호
/
pp.1718-1723
/
2014
We proposes the method to detect the Hangul and English character region from natural image using structural feature of Hangul and English Characters. First, we extract edge features from natural image, Next, if features are not corresponding to the heuristic rule of character features, extracted features filtered out and select candidates of character region. Next, candidates of Hangul character region are merged into one Hangul character using Hangul character merging algorithm. Finally, we detect the final character region by Hangul character class decision algorithm. English character region detected by edge features of English characters. Experimental result, proposed method could detect a character region effectively in images that contains a complex background and various environments. As a result of the performance evaluation, A proposed method showed advanced results about detection of Hangul and English characters region from natural image.
Transactions of the Korean Society of Mechanical Engineers A
/
제34권11호
/
pp.1681-1689
/
2010
Several studies on the use of Support Vector Machines (SVMs) for diagnosing rotating machinery have been successfully carried out, but the fault classification depends on the input features as well as a multi-classification scheme, binary optimizer, kernel function, and the parameter to be used in the kernel function. Most of the published papers on multiclass SVM applications report the use of the same features to classify the faults. In this study, simple statistical features are determined on the basis of time domain vibration signals for various fault conditions, and the optimal features for each fault condition are selected. Then, the optimal features are used in the SVM training and in the classification of each fault condition. Simulation results using experimental data show that the results of the proposed stepwise classification approach with a relatively short training time are comparable to those for a single multi-class SVM.
In this study, a length adjustment algorithm for cyclic signals in manufacturing process using Time Invariant Feature point Extraction and Matching(TIFEM) is proposed. In order to precisely compensate the length of cyclic signals which have irregular length in the middle of signal as well as in the full length more feature points are needed. The extracted feature must involve information about the pattern of signal and should have invariant properties on time and scale. The proposed TIFEM algorithm extracts features having the intrinsic properties of the signal characteristics at first. By using those extracted features, feature vector is constructed for each time point. Among those extracted features, the only effective features are filtered and are chosen such as basis for the length adjustment. And then the partial length adjustment is performed by matching feature points. To verify the performance of the proposed algorithm, the experiments were performed with the experimental data mimicking the three kinds of signals generated from the actual semiconductor process.
This paper presents a method to enhance the performance of supervised classification by separating the spectral signature of the training data sets for each class. Using clustering technique, a training data set is divided into several subsets which show a pattern of the normal distribution with small value of spectral variances. Then a supervised classification is applied with the divided training data set as training data for the temporary subclasses of the original class. The proposed method is applied to a Landsat TM image of Busan area for the applicability test. The result shows that the proposed method produces better classified results than the conventional statistical classification methods. It is expected that the proposed method will reduce the effort and expense for selecting the training data set for each class in an area which has spectrally homogeneous signature.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
한국퍼지및지능시스템학회 2004년도 춘계학술대회 학술발표 논문집 제14권 제1호
/
pp.450-453
/
2004
본 논문은 지문을 이용하여 개인 식별 및 확인하는 생체인식 시스템을 제안한 것으로, 입력 지문 영상으로부터 중심점(Core)를 찾아 8개 방향의 가버 필터를 사용하여 지문의 특징을 드러나게 한다. 또한, 중심점으로부터 일정 영역을 섹터로 분할하고 분할된 섹터 별 특징 값을 산출하여 코드 북으로 등록한다. 등록된 데이터로부터 매칭하는 과정은 상관 계수를 이용하여 유사도가 가장 높은 등록자를 선별하고 인식 대상자로 선정한다. 이와 같은 방법은 융선의 분기점과 단점을 특징으로 하는 알고리즘에서 문제시되는 특징점이 빠지는 경우와 의사 특징점에 의한 오인식을 줄일 수 있으며, 중심점과 기준 축의 설정에 따라 지문 영상의 회전에 영향을 받지 않는 방법으로 좋은 성능을 보일 수 있다. 제안된 방법의 유용성을 확인하고자 광학식 지문 센서와 PC를 이용한 실시간 지문 인식 시스템을 구현하였다.
Proceedings of the Korean Information Science Society Conference
/
한국정보과학회 2003년도 가을 학술발표논문집 Vol.30 No.2 (2)
/
pp.580-582
/
2003
특징점 기반 지문 인식 방법은 지문 영상의 전처리 과정을 포함한 특징점 추출 과정과 추출된 특징점들의 유사도를 판단하는 정합 과정으로 구성된다. 특징점들의 정합과정을 수행하는 여러 가지 방법들 중 Hausdorff 거리 기반 정합 방법은 이동과 회전이 적은 지문의 특징점들에 대해 빠르게 계산할 수 있는 장점을 갖는다. 그러나, 이 방법은 이동과 회전이 많은 지문 영상의 경우 연산이 많아지는 단점을 가진다. 본 논문에서는 정합을 실행하기 전 지문의 중심점과 지역적인 블럭들의 방향성을 기준으로 정렬을 수행하여 비교되는 지문 특징점간의 회전 오차와 이동 오차를 줄임으로써, 기존의 정합 방법의 불필요한 연산량을 줄일 수 있는 방법을 제안하였다. 제안된 방법을 검증하기 위해 Hausdorff 거리 기반 정합 방법을 구현하고 그것에 대한 결과와 선정렬을 사용한 후의 정합 결과를 실험, 비교하였다. 이때의 평균 Hausdorff 거리는 Genuine의 경우 0.095가 줄어들었고, Improster의 경우 0.655가 늘어나는 성능 향상을 나타냈다.
This Paper develops the Hanguel character learning system for elementary school students and foreigners. Standard character pattern is selected and DB is consructed for model by feature extraction. For this, performance of pre-processing independent of environments, feature extraction and simility functions are defined. Finally, beauty evaluation is done by matching between input character pattern written by elementary school students or foreigners and standard character pattern. It is possible for this system to extend the specific character font learning from selecting the specific standard character pattern. Also the effectiveness of this parer is demonstrated by several experiments.
본 논문은 지문을 이용하여 방사형 기저함수 신경회로망(RBFNN: Radial Basis Function Neural Network)을 기반으로 지문을 식별하고 확인할 수 있는 방법을 제시한다. 지문 데이터로는 공인데이터인 FVC2002의 지문 데이터를 사용하였다. 지문 이미지의 개선을 위해 여러 단계의 전처리를 한 후 특징점을 추출하여 데이터베이스를 구축하였다. 이렇게 구축된 데이터베이스를 방사형 기저함수 신경회로망을 통해 학습을 시키고 지문의 패턴을 분류하여 지문의 대상자와 일치하는 패턴의 지문들을 선정한다. 선정된 지문들과 입력된 지문의 특징점을 이용하여 지문의 대상자를 식별한다.
Lee Min-Su;Park Seung-Soo;Kang Sung-Hee;Park Woong-Yang
Proceedings of the Korean Information Science Society Conference
/
한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (A)
/
pp.25-27
/
2006
본 논문에서는 시계열 마이크로어레이데이터 마이닝을 위한 전처리 작업으로 시계열 마이크로어레이 데이터에 특징 추출 방법 및 상관관계 분석을 이용하여 분화 과정에 대해 분별력 있는 유전자들을 선정하기 위한 방법을 제안하고, 줄기세포가 신경세포로 분화하는 과정에서 특이적으로 발현되는 유전자들을 찾기 위한 시계열 마이크로어레이 데이터 분석 과정을 하나의 예로 제시한다. 분석 결과, 제안한 방법이 분화 특이적으로 발현되는 분별력 있는 유전자들, 분화 과정에서 공통적으로 발현되는 유전자들, 그리고 경계선에 존재하는 유전자들을 통해서 줄기세포 신경분화의 특징들을 규명하는데 매우 유용함을 보였다.
This paper proposes the method of surface classification and threshold value selection for surface classification of the three-dimensional object recognition. The processings of three-dimensional image processing system consist of three steps, i.e, acquisition of range data, feature extraction and matching process. This paper proposes the method of shape feature extraction from the acquired rage data in the entire three-dimensional image processing system. In order to achieve these goals, firstly, this article proposes the surface classification method by using the distribution characteristics of sign value from range values. Also pre-existing method which uses the K-curvature and K-curvature has limitation in the practical threshold value selection. To overcome this, this article proposes the selection of threshold value for surface classification. Finally, the effectiveness of this article is demonstrated by the several experiments.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.