Proceedings of the Korean Information Science Society Conference
/
2004.10b
/
pp.778-780
/
2004
본 논문에서는 오브젝트가 서로 겹쳤다가 분리되는 상황 하에서도 오브젝트를 정확히 추적할 수 있는 칼라관계(color relationship)특징 벡터를 제안한다. 오브젝트의 정확한 추적경로와 이벤트 검출을 위하여 신뢰성 있는 특징 벡터 추출은 필수적이다. 향상된 오브젝트 추적을 위해 면적. 크기뿐만 아니라 본 논문에서 제안한 칼라관계 특징 벡터를 사용한다. 실험 영상에 적용한 결과 제안된 방법을 사용하였을 경우 멀티오브젝트의 영상에서 겹침(occlusion)과 나타남(disocclusion)이 발생하는 경우에도 정확한 경로 추적이 이루어짐을 볼 수 있었다
Journal of the Institute of Convergence Signal Processing
/
v.4
no.3
/
pp.21-26
/
2003
A new method to realize 3-dimensional object pattern recognition system using Fourier-based feature extractor has been proposed. The procedure to obtain the invariant feature vector is as follows ; A closed surface is generated by tracing the surface of object using the 3-dimensional polar coordinate. The centroidal distances between object's geometrical center and each closed surface points are calculated. The distance vector is translation invariant. The distance vector is normalized, so the result is scale invariant. The Fourier spectrum of each normalized distance vector is calculated, and the spectrum is rotation invariant. The Fourier-based feature generating from above procedure completely eliminates the effect of variations in translation, scale, and rotation of 3-dimensional object with closed-surface. The experimental results show that the proposed method has a high accuracy.
본 논문에서는 발전하는 3D 그래픽스 기술을 이용하여 문화재의 도면 실루엣을 생성하는 방법을 제안하고자 한다. 3D 스캐너로 정밀 실측된 3D 데이터를 이용하여 문화재의 도면을 생성하기 위한 벡터 실루엣(Silhouette) 추출 과정은 다음과 같다. 먼저 실측된 3D 데이터를 정규화 된 3D공간으로 이동하고, 이동 후에는 데이터에 존재하는 모든 에지(edge)를 검출하여 에지리스트(edge list)를 생성한다. 생성된 에지리스트는 다시 윤곽에지(Contour edge)와 주름에지(Crease edge)로 분류하는데, 윤곽에지는 문화재의 윤곽 실루엣을 형성하는데 이용하고, 윤곽에지를 제외한 주름에지는 문화재의 표면 특징을 나타내는 내부문양 실루엣을 형성하는데 이용한다. 내부문양 실루엣은 사용자가 입력하는 임계값과 주름에지를 구성하는 두면의 방향 벡터의 내적을 비교하여 추출한다. 추출한 벡터 실루엣은 윤곽 실루엣과 내부문양 실루엣으로 구분되며, 두 벡터 실루엣을 이용함으로써 문화재의 구조적 해석과 표면의 특징을 해석할 수 있는 도면 실루엣 생성이 가능했다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.6
no.6
/
pp.986-991
/
2002
This paper presents off-line handwritten numeral recognition method by using Eigen-Vectors. In this method, numeral features are extracted statistically by using Eigen-Vectors through KL transform and input numeral is recognized in the feature space by the nearest-neighbor classifier. In our feature extraction method, basis vectors which express best the property of each numeral type within the extensive database of sample numeral images are calculated, and the numeral features are obtained by using this basis vectors. Through the experiments with the unconstrained handwritten numeral database of Concordia University, we have achieved a recognition rate of 96.2%.
Kim, Jin-Gyu;Kim, Jong-Sun;Joo, Young-Hoon;Park, Jin-Bae
Proceedings of the KIEE Conference
/
2011.07a
/
pp.1910-1911
/
2011
본 논문에서는 네트워크 카메라를 이용한 물체 감시 및 비정상 행위의 판단을 위한 실시간 시스템을 제안한다. 제안된 시스템은 먼저 물체의 감시를 위해 SIFT 알고리즘에 기반으로 감시 물체의 특징 정보를 DB화 하고, 히스토그램(Histogram)기법을 활용하여 감시지역을 설정한다. 또한 인간의 행동 및 비정상 행위를 판단하기 위하여, 가상 인간 스켈레톤 모델을 이용하여 입력된 영상에서의 인간의 특징점을 추출한다. 추출된 특징점을 바탕으로 PCA(Principal Component Analysis)를 이용하여 인간의 움직임을 보다 정확하게 표현할 수 있는 특징벡터를 생성하였다. 생성된 특징벡터를 기반으로 퍼지분류기를 이용하여 인간의 행동을 분류하고, 생성된 특징벡터와 특정물체의 거리를 기반으로 인간의 비정상행위를 판단한다. 제안된 방법은 실험을 통해 시스템의 응용 가능성을 증명한다.
본 논문에서는 MPEG 압축 도메인 상에서 카메라 움직임 정보를 추출하는 효과적인 방법을 제안한다. 카메라 움직임 정보는 동영상에서의 주요 장면과 프레임간의 관계를 기술할 수 있는 실마리를 제공한다. 본 논문에서는 MPEG Video의 모션벡터를 이용하여 카메라 움직임 정보를 추출한다. 카메라 움직임에 따라 모션벡터는 특징적으로 분포하는 특성이 있다. 본 논문에서는 이러한 특징들을 이용하여 MPEG 모션벡터의 방향성과 크기를 이용하여 각 모션벡터끼리 교차점과 평행성분을 구한다. 그리고 이것을 이용하여 같은 교차점과 평행성분끼리 모션벡터 Clustering 을 수행한다 본 논문에서는 클러스터링 된 모션벡터를 Fuzzy inference rule을 이용하여 카메라 움직임이 Zoom, Pan, Tilt 인지 여부를 판단한다. 실험은 전통적인 방법 중에 하나인 Affine Model 방법과 비교하며 본 논문의 방법이 어느정도 우수함을 입증한다.
Proceedings of the Korean Information Science Society Conference
/
2002.10d
/
pp.583-585
/
2002
얼굴 인식은 이미지에 대한 많은 변화(표정, 조명, 얼굴의 방향)로 인해 높은 인식률을 얻기 어렵다. 이 문제를 해결하기 위해, 여러 가지의 얼굴 인식에 관한 방법이 연구되었다. 본 논문은 윤곽선이 검출된 흑백 이미지에서 명암 정보를 이용하여 특징을 추출한 얼굴 인식 시스템을 구현한다. 얼굴 방향에 대해 제약조건을 지닌 정면의 얼굴 이미지에서 소벨 마스크(Sobel Mask)를 이용하여 추출한 윤곽선 이미지를 일정한 크기의 영역들을 구성하여 특징벡터를 생성한다. 생성된 특징벡터를 이용하여 빠른 속도로 얼굴의 특징을 추출하여 개인 정보를 생성할 수 있다. 개인 정보를 가지고 SVM(Support Vector Machine)을 이용하여 일대일 대응에서 인증을 실험한다. 이 시스템은 기하학적 특성 추출 방법보다 계산량이 적고, 높은 인식률을 보여준다.
Proceedings of the Korean Information Science Society Conference
/
2003.10b
/
pp.604-606
/
2003
본 논문은 향상된 Scale Invariant Feature Transform (SIFT) 기법과 이로부터 얻어진 로컬 특징 영역에서 다중특징을 이용한 물체인식 방법에 대하여 논하였다. SIFT 기법 [1]은 물체의 크기. 회전. 3차원 좌표변환에 강인한 특성을 갖는다. 이 기법에서는 크기가 다른 가우시안 (Gaussian) 함수를 적용한 영상들의 차이에서의 최대 및 최소값이 특징점으로 결정된다. 하지만 SIFT 알고리듬의 특성상, 인식되어야 될 물체의 비교적 큰 크기 변화, 중요도가 낮은 특징점들의 추출, 그리고 서로 다른 물체에서 추출된 유사한 특징벡터등이 인식 시스템의 신뢰도를 저하 시킬 수 있다. 이에 대응방안으로, 본 논문에서는 상대적으로 낮은 인식정보를 갖는 추출된 특징점을 제거하기 위한 기법과 서로 다른 물체에서 생성된 유사 특징벡터의 구분을 위한 특징점에서의 방위 (orientation) 비교법 및 색차 (chrominance) 정보를 사용에 대하여 기술하였다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.21
no.5
/
pp.960-966
/
2017
In this paper, we proposed an algorithm that can extract lesion by inputting a medical image. Feature points are extracted using SIFT algorithm to extract genetic training of medical image. To increase the intensity of the feature points, the input image and that raining image are matched using vector similarity and the lesion is extracted. The vector similarity match can quickly lead to lesions. Since the direction vector is generated from the local feature point pair, the direction itself only shows the local feature, but it has the advantage of comparing the similarity between the other vectors existing between the two images and expanding to the global feature. The experimental results show that the lesion matching error rate is 1.02% and the processing speed is improved by about 40% compared to the case of not using the feature point intensity information.
본 논문에서는 조명의 변화에 의해 컬러 영상의 컬러 성분이 달라지더라도 영상 내 컬러간의 편차값을 나타내는 공분산 행렬(covariance matrix)의 고유벡터(eigenvector)와 영상 내 화소들의 컬러 성분과의 상관관계는 거의 변화하지 않는 특징을 이용한 조명 변화에 강인한 영상 검색 방법을 제안한다. 제안된 방법은 영상에서 컬러 성분들의 공분산 행렬과 공분산 행렬의 고유치(eigenvalue), 고유벡터를 계산한 후, 가장 큰 고유치에 관계된 고유벡터로 화소를 투영시키고, 투영된 벡터의 크기 성분으로 영상을 재구성한다. 재구성된 영상으로부터 7개의 불변 모멘트(moment)를 계산하고, 공분산의 가장 큰 고유치를 가중치로 부과하여 특징벡터를 추출한다. 7개의 불변 모멘트로부터 구한 특징벡터는 영상 내 물체의 이동, 영상의 회전, 크기 변화뿐만 아니라, 조명의 변화에 의해 컬러가 변화할 경우에도 유사한 영상을 잘 검색한다. 제안된 방법의 성능 확인을 위하여 5가지 조명에서 얻은 영상 데이터베이스를 이용하여 실험하였으며, 실험 결과 히스토그램 인터섹션에 비해 적은 특징량으로 검색이 가능하면서 조명 변화에도 대응할 수 있는 검색 결과를 얻을 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.