• Title/Summary/Keyword: 특징벡터선택

Search Result 169, Processing Time 0.032 seconds

Feature Extraction of Images By Using Independent Component Analysis of Fixed-Point Algorithm Based on Secant Method (할선법에 기초한 고정점 학습알고리즘의 독립성분분석을 이용한 영상의 특징추출)

  • 조용현;민성재;김아람;오정은
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.11b
    • /
    • pp.137-140
    • /
    • 2002
  • 본 연구에서는 할선법에 기초한 고정점 알고리즘의 독립성분분석기법을 이용한 영상의 특징추출을 제안하였다. 여기서 할선법은 엔트로피 최적화를 위한 목적함수의 근을 구하기 위해 단순히 함수 값만을 이용하여 계산을 간략하게 함으로써 역혼합행렬의 경신속도를 빠르게 하기 위함이다. 제안된 기법을 256×256 픽셀(pixel)의 10개 지문영상들로부터 선택된 16×16 픽셀의 20,000개 패치를 대상으로 시뮬레이션 한 결과. 추출된 16×16 픽셀의 160개 독립성분 기저벡터 각각은 지문영상들에 포함된 공간적인 주파수 특성과 방향성을 가지는 경계 특성이 잘 드러나는 국부적인 특징들임을 확인할 수 있었다.

  • PDF

A Study on the Performance Enhancement of Face Detection using SVM (SVM을 이용한 얼굴 검출 성능 향상에 대한 연구)

  • Lee Chi-Ceun;Jung Sung-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.2
    • /
    • pp.330-337
    • /
    • 2005
  • This paper proposes a method which improves the performance of face detection by using SVM(Support Vector Machine). first, it finds face region candidates by using AdaBoost based object detection method which selects a small number of critical features from a larger set. Next it classifies if the candidate is a face or non-face by using SVM(Support Vector Machine). Experimental results shows that the proposed method improve accuracy of face detection in comparison with existing method.

Feature Extraction of Single Images by Using Independent Component Analysis Based on Neuarl Networks (신경망 기반 독립성분분석에 의한 단일영상들의 특징추출)

  • 조용현;민성재;김아람;오정은
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.370-373
    • /
    • 2002
  • 본 논문에서는 단일영상들에 포함된 특징들을 효과적으로 추출하기 위하여 신경망 기반 독립성분분석기법의 이용을 제안하였다. 여기서 독립성분의 효과적인 분석을 위해 고정점 학습알고리즘의 신경망 기반 기법을 이용하였다. 이는 수치적 기법에 비해 신경망이 가지는 ?ㄱ습 등의 우수한 속성과 뉴우턴법의 고정점 알고리즘이 가지는 빠르고 간단한 계산속성을 동시에 살리기 위함이다. 제안된 기법을 512x412 픽셀의 L둠 영상과 480x225 픽셀의 지폐영상 각각에서 선택된 1,000개의 영상패치들을 대상으로 시뮬레이션 한 결과, 추출된 16x16 펙셀의 160개 독립성분 기저벡터는 지문영상과 지폐영상 각각에 포함된 공간적인 주파수 특성과 방향성을 가지는 경계 특성이 잘 드러나는 국부적인 특징들임을 확인할 수 있었다.

An Efficient Feature Extraction of Finger Images by Using Independent Component Analysis Based on Neuarl Networks (신경망 기반 독립성분분석을 이용한 지문영상의 효과적인 특징추출)

  • 조용현;민성재
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.291-294
    • /
    • 2002
  • 본 논문에서는 신경망 기반 독립성분분석기법을 이용하여 지문영상에 포함된 특징들을 효과적으로 추출하는 방법을 제안하였다. 여기서 독립성분의 효과적인 분석을 위해 고정점 학습알고리즘의 신경망 기반 기법을 이용하였다. 이는 수치적 기법에 비해 신경망이 가지는 학습 등의 우수한 속성과 뉴우턴법의 고정점 알고리즘이 가지는 빠르고 간단한 계산속성을 동시에 살리기 위함이다. 제안된 기법을 256$\times$256 픽셀의 8개 지문영상에서 선택된 10,000개의 영상패치를 대상으로 시뮬레이션 한 결과, 추출된 16$\times$16 펙셀의 160개 독립성분 기저벡터는 지문영상들에 포함된 공간적인 주파수 특성과 방향성을 가지는 경계 특성이 잘 드러나는 국부적인 특징들임을 확인할 수 있었다.

Hierarchical transmission using morphology and vector quantization (모폴로지와 벡터 양자화를 사용한 영상의 계층적 전송)

  • 김신환;김성욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.6
    • /
    • pp.1170-1177
    • /
    • 1997
  • Morphology is a shape preseving filter. Several morphology filter can be made by the combination of morphological basic operation. If we use morphology filter in decimation process for a hierarchical encoder, there are some advantagesin reduction aliasing effects. In this paper, we propose a new hierarchical coder with morphological filtering and vector quantization. And then, firstly, we confirm that CO filtering is the best one among the 4 kinds of morphology filters to reduce aliasing effects in Laplacian pyramid transmission proposed by Burt. Secondly, the those two coders was compared. The results of our simulation show that our new coder surpasser the Laplacian pyramid especially in complex images.

  • PDF

Image Retrieval Using Combination of Color and Multiresolution Texture Features (칼라 및 다해상도 질감 특징 결합에 의한 영상검색)

  • Chun Young-deok;Sung Joong-ki;Kim Nam-chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9C
    • /
    • pp.930-938
    • /
    • 2005
  • We propose a content-based image retrieval(CBIR) method based on an efncient combination of a color feature and multiresolution texture features. As a color feature, a HSV autocorrelograrn is chosen which is blown to measure spatial correlation of colors well. As texture features, BDIP and BVLC moments are chosen which is hewn to measure local intensity variations well and measure local texture smoothness well, respectively. The texture features are obtained in a wavelet pyramid of the luminance component of a color image. The extracted features are combined for efficient similarity computation by the normalization depending on their dimensions and standard deviation vectors. Experimental results show that the proposed method yielded average $8\%\;and\;11\%$ better performance in precision vs. recall than the method using BDIPBVLC moments and the method using color autocorrelograrn, respectively and yielded at least $10\%$ better performance than the methods using wavelet moments, CSD, color histogram. Specially, the proposed method shows an excellent performance over the other methods in image DBs contained images of various resolutions.

Faults Current Discrimination Using FCM (FCM을 이용한 고장전류의 판별에 관한 연구)

  • Jeong, Jong-Won;Ji, Suk-Joon;Lee, Joon-Tark;Kim, Kwang-Back
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.458-460
    • /
    • 2007
  • RBF 네트워크의 중간층은 클러스터링 하는 층으로 주어진 자료 집합을 유사한 클러스터들로 분류하는 것이다. 여기서 유사하다는 것은 입력 데이터들에 대한 특징 벡터 공간사이에서 한 클러스터내의 벡터들 간에 거리를 측정하여 정해진 반경 내에 존재하면 같은 클러스터로 분류하고 정해진 반경 내에 존재하지 않으면 다른 클러스터로 분류한다. 그러나 정해진 반경 내에서 클러스터링 하는 것은 잘못된 클러스터를 선택하는 단점을 가지게 된다. 그러므로 중간층을 결정하는 것은 RBF 네트워크의 전반적인 효율성에 큰 영향을 준다. 따라서 본 논문에서는 효율적으로 중간층을 결정하기 위한 방법으로 퍼지 C-Means 클러스터링 알고리즘을 이용하고자 하였다. 그리하여 본 논문에서는 고장 전류의 특성을 해석하여 그 원인을 판단, 분류하기 위하여 전력계통의 고장 기록 장치로부터 얻어지는 선로의 전류 데이터를 FCM을 이용 분류하여 다양한 고장 모드를 판별할 수 있었다.

  • PDF

Fuzzy RBF Network using FCM (FCM을 이용한 퍼지 RBF 네트워크)

  • 김재용;이상수;이준행;김광백
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.158-161
    • /
    • 2004
  • RBF 네트워크의 중간층은 클러스터링하는 층이다. 즉, 이 충의 목적은 주어진 자료 집합을 유사한 클러스터들(homogenous cluster)로 분류하는 것이다. 여기서 유사하다는 것은 입력 데이터들에 대한 특징 벡터 공간사이에서 한 클러스터내의 벡터들 간에 거리를 측정하여 정해진 반경 내에 존재하면 같은 클러스터로 분류하고 정해진 반경 내에 존재하지 않으면 다른 클러스터로 분류한다. 그러나 정해진 반경 내에서 클러스터링하는 것은 잘못된 클러스터를 선택하는 단점을 가지게 된다. 그러므로 중간층을 결정하는 .것은 RBF 네트워크의 전반적인 효율성에 큰 영향을 준다. 따라서 본 논문에서는 효율적으로 중간층을 결정하기 위한 방법으로 퍼지 C-Means 클러스터링 알고리즘을 적용한 퍼지 RBF 네트워크를 제안한다. 제안된 퍼지 RBF 네트워크의 학습은 크게 두 단계로 구분된다. 첫 번째 단계는 입력층과 중간층 사이에 퍼지 C-Means 알고리즘이 수행되고, 두 번째 단계는 중간층과 출력층 사이에 지도학습이 수행된다. 제안된 방법의 학습 성능을 평가하기 위하여 실제 주민등록증에서 추출한 숫자패턴에 적용한 결과, 기존의 RBF네트워크 보다 학습 성능이 개선된 것을 확인하였다.

  • PDF

Learning and Performance Comparison of Multi-class Classification Problems based on Support Vector Machine (지지벡터기계를 이용한 다중 분류 문제의 학습과 성능 비교)

  • Hwang, Doo-Sung
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.7
    • /
    • pp.1035-1042
    • /
    • 2008
  • The support vector machine, as a binary classifier, is known to surpass the other classifiers only in binary classification problems through the various experiments. Even though its theory is based on the maximal margin classifier, the support vector machine approach cannot be easily extended to the multi-classification problems. In this paper, we review the extension techniques of the support vector machine toward the multi-classification and do the performance comparison. Depending on the data decomposition of the training data, the support vector machine is easily adapted for a multi-classification problem without modifying the intrinsic characteristics of the binary classifier. The performance is evaluated on a collection of the benchmark data sets and compared according to the selected teaming strategies, the training time, and the results of the neural network with the backpropagation teaming. The experiments suggest that the support vector machine is applicable and effective in the general multi-class classification problems when compared to the results of the neural network.

  • PDF

Feature Extraction to Detect Hoax Articles (낚시성 인터넷 신문기사 검출을 위한 특징 추출)

  • Heo, Seong-Wan;Sohn, Kyung-Ah
    • Journal of KIISE
    • /
    • v.43 no.11
    • /
    • pp.1210-1215
    • /
    • 2016
  • Readership of online newspapers has grown with the proliferation of smart devices. However, fierce competition between Internet newspaper companies has resulted in a large increase in the number of hoax articles. Hoax articles are those where the title does not convey the content of the main story, and this gives readers the wrong information about the contents. We note that the hoax articles have certain characteristics, such as unnecessary celebrity quotations, mismatch in the title and content, or incomplete sentences. Based on these, we extract and validate features to identify hoax articles. We build a large-scale training dataset by analyzing text keywords in replies to articles and thus extracted five effective features. We evaluate the performance of the support vector machine classifier on the extracted features, and a 92% accuracy is observed in our validation set. In addition, we also present a selective bigram model to measure the consistency between the title and content, which can be effectively used to analyze short texts in general.