• Title/Summary/Keyword: 특징벡터선택

Search Result 169, Processing Time 0.032 seconds

Context Aware Feature Selection Model for Salient Feature Detection from Mobile Video Devices (모바일 비디오기기 위에서의 중요한 객체탐색을 위한 문맥인식 특성벡터 선택 모델)

  • Lee, Jaeho;Shin, Hyunkyung
    • Journal of Internet Computing and Services
    • /
    • v.15 no.6
    • /
    • pp.117-124
    • /
    • 2014
  • Cluttered background is a major obstacle in developing salient object detection and tracking system for mobile device captured natural scene video frames. In this paper we propose a context aware feature vector selection model to provide an efficient noise filtering by machine learning based classifiers. Since the context awareness for feature selection is achieved by searching nearest neighborhoods, known as NP hard problem, we apply a fast approximation method with complexity analysis in details. Separability enhancement in feature vector space by adding the context aware feature subsets is studied rigorously using principal component analysis (PCA). Overall performance enhancement is quantified by the statistical measures in terms of the various machine learning models including MLP, SVM, Naïve Bayesian, CART. Summary of computational costs and performance enhancement is also presented.

Mean Shift Clustering을 이용한 영상 검색결과 개선

  • Kwon, Kyung-Su;Shin, Yun-Hee;Kim, Young-Rae;Kim, Eun-Yi
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2009.05a
    • /
    • pp.138-143
    • /
    • 2009
  • 본 논문에서는 감성 공간에서 mean shift clustering과 user feedback을 이용하여 영상 검색 결과를 개선하기 위한 시스템을 제안한다. 제안된 시스템은 사용자 인터페이스, 감성 공간 변환, 검색결과 순위 재지정(re-ranking)으로 구성된다. 사용자 인터페이스는 텍스트 형태의 질의 입력과 감성 어휘 선택에 따른 user feedback에 의해 개선된 검색결과를 보인다. 사용된 감성 어휘는 고바야시가 정의한 romantic, natural, casual, elegant, chic, classic, dandy, modern 등의 8개 어휘를 사용한다. 감성 공간 변환 단계에서는 입력된 질의에 따라 웹 영상 검색 엔진(Yahoo)에 의해 검색된 결과 영상들에 대해 컬러와 패턴정보의 특징을 추출하고, 이를 입력으로 하는 8개의 각 감성별 분류기에 의해 각 영상은 8차원 감성 공간으로의 특징 벡터로 변환된다. 이때 감성 공간으로 변환된 특징 벡터들은 mean shift clustering을 통해 군집화 되고, 그 결과로써 대표 클러스터를 찾게 된다. 검색결과 순위 재지정 단계에서는 user feedback 유무에 따라 대표 클러스터의 평균 벡터와 user feedback에 의해 생성된 사용자 감성 벡터에 의해 검색 결과를 개선할 수 있다. 이때 각 기준에 따라 유사도가 결정되고 검색결과 순위가 재지정 된다 제안된 시스템의 성능을 검증하기 위해 7개의 질의의 각 400장, 총 2,800장에 대한 Yahoo 검색 결과와 제안된 시스템을 개선된 검색 결과를 비교하였다.

  • PDF

Motion Vector and Disparity Vector Prediction for Multi-view Video Coding (다시점 동영상 부호화를 위한 움직임 벡터 및 변이 벡터 예측 기법)

  • Lee, Seo-Young;Shin, Kwang-Mu;Kim, Sung-Min;Chung, Ki-Dong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10d
    • /
    • pp.560-563
    • /
    • 2007
  • 다시점 영상은 관찰자가 원하는 시점을 선택할 수 있고, 자연스러운 입체감을 제공한다. 하지만 카메라의 수가 증가함에 따라 데이터양이 늘어나는 단점이 있다. 본 논문은 시.공간적 상관성을 고려한 시점 간 움직임 벡터 예측 기법을 제안한다. 인접한 시점의 영상이 비슷한 움직임 정보를 가지는 특징을 이용해 현재 블록의 움직임 벡터의 예측간을 계산한다. 또한 시간적으로 연속한 프레임의 경우 비슷한 변이 벡터를 가지므로, 이전 프레임의 변이 벡터 정보를 현재 매크로블록의 변이벡터로 활용하는 방법을 제안한다.

  • PDF

Study of the text analysis and feature selection performance for emotional inference (텍스트 기반 감정 추정을 위한 특징 추출 및 선택기법에 따른 성능 연구)

  • Kim, Hanjoo;Ha, Heonseok;Park, Seunghyun;Yoon, Sungroh
    • Annual Conference of KIPS
    • /
    • 2014.11a
    • /
    • pp.876-878
    • /
    • 2014
  • 인터넷 사용량이 급증하고 사용자들이 생성하는 데이터의 양이 증가함에 따라 사용자 데이터 분석은 객관적인 정보 탐색과 분석을 넘어 주관적인 감정을 분석하는 데까지 시도되고 있다. 이러한 감정 분석은 사업, 행정, 외교 등의 다양한 분야에 걸쳐 용용 될 수 있다. 본 연구에서는 텍스트 데이터를 주요 분석 대상으로 하여 문장 구성의 다양한 요소를 특징화하고, 특징화된 문장에 대해 다양한 서포트 벡터머신을 통한 학습을 시도함으로써 텍스트가 내포한 감정을 추측한다. 다양한 특징화 방법을 적용하되, 낮은 밀도가 될 것으로 추측되는 데이터 매트릭스의 차원 감쇄를 위해 정보엔트로피 기반의 특징 선택기법을 적용한다.

Design and Implementation of a Real-Time Face Detection System (실시간 얼굴 검출 시스템 설계 및 구현)

  • Jung Sung-Tae;Lee Ho-Geun
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.8
    • /
    • pp.1057-1068
    • /
    • 2005
  • This paper proposes a real-time face detection system which detects multiple faces from low resolution video such as web-camera video. First, It finds face region candidates by using AdaBoost based object detection method which selects a small number of critical features from a larger set. Next, it generates reduced feature vector for each face region candidate by using principle component analysis. Finally, it classifies if the candidate is a face or non-face by using SVM(Support Vector Machine) based binary classification. According to experiment results, the proposed method achieves real-time face detection from low resolution video. Also, it reduces the false detection rate than existing methods by using PCA and SVM based face classification step.

  • PDF

Image Retrieval Using Spacial Color Correlation and Local Texture Characteristics (칼라의 공간적 상관관계 및 국부 질감 특성을 이용한 영상검색)

  • Sung, Joong-Ki;Chun, Young-Deok;Kim, Nam-Chul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.103-114
    • /
    • 2005
  • This paper presents a content-based image retrieval (CBIR) method using the combination of color and texture features. As a color feature, a color autocorrelogram is chosen which is extracted from the hue and saturation components of a color image. As a texture feature, BDIP(block difference of inverse probabilities) and BVLC(block variation of local correlation coefficients) are chosen which are extracted from the value component. When the features are extracted, the color autocorrelogram and the BVLC are simplified in consideration of their calculation complexity. After the feature extraction, vector components of these features are efficiently quantized in consideration of their storage space. Experiments for Corel and VisTex DBs show that the proposed retrieval method yields 9.5% maximum precision gain over the method using only the color autucorrelogram and 4.0% over the BDIP-BVLC. Also, the proposed method yields 12.6%, 14.6%, and 27.9% maximum precision gains over the methods using wavelet moments, CSD, and color histogram, respectively.

GPU-based Sparse Matrix-Vector Multiplication Schemes for Random Walk with Restart: A Performance Study (랜덤워크 기법을 위한 GPU 기반 희소행렬 벡터 곱셈 방안에 대한 성능 평가)

  • Yu, Jae-Seo;Bae, Hong-Kyun;Kang, Seokwon;Yu, Yongseung;Park, Yongjun;Kim, Sang-Wook
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.96-97
    • /
    • 2020
  • 랜덤워크 기반 노드 랭킹 방식 중 하나인 RWR(Random Walk with Restart) 기법은 희소행렬 벡터 곱셈 연산과 벡터 간의 합 연산을 반복적으로 수행하며, RWR 의 수행 시간은 희소행렬 벡터 곱셈 연산 방법에 큰 영향을 받는다. 본 논문에서는 CSR5(Compressed Sparse Row 5) 기반 희소행렬 벡터 곱셈 방식과 CSR-vector 기반 희소행렬 곱셈 방식을 채택한 GPU 기반 RWR 기법 간의 비교 실험을 수행한다. 실험을 통해 데이터 셋의 특징에 따른 RWR 의 성능 차이를 분석하고, 적합한 희소행렬 벡터 곱셈 방안 선택에 관한 가이드라인을 제안한다.

개선된 퍼지 ART 기반 RBF 네트워크와 PCA 알고리즘을 이용한 여권 인식 및 얼굴 인증

  • Jang, Do-Won;Kim, Kwang-Baek
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.11a
    • /
    • pp.547-556
    • /
    • 2005
  • 본 논문에서는 출입국자 관리의 효율성과 제계적인 출입국 관리를 위하여 여권 코드를 자동으로 인식하고 위조 여권을 판별할 수 있는 여권 인식 및 얼굴 인증 방법을 제안한다. 여권 이미지가 기울어진 상태로 스캔되어 획득되어질 경우 개별 코드 인식과 얼굴 인증에 많은 영향을 미칠 수도 있으므로 기울기 보정은 문자 분할 및 인식, 얼굴 인증에 있어 매우 중요하다. 따라서 본 논문에서는 여권 영상을 스미어링한 후, 추출된 문자열 중에서 가장 긴 문자열을 선택하고 이 문자열의 좌측과 우측 부분의 두께 중심을 연결하는 직선과 수평선과의 기울기를 이용하여 여권 영상에 대한 각도 보정을 수행한다. 여권 모드 추출은 소벨 연산자와 수평 스미어링, 8 방향 윤곽선 추적 알고리즘을 적용하여 여권 코드의 문자열 영역을 추출하고, 추출된 여권 코드 문자열 영역에 대해 반복 이지화 방법을 적용하여 코드의 문자열 영역을 이진화한다. 이진화된 문자열 영역에 대해 CDM 마스크를 적용하여 문자열의 코드들을 복원하고 8 방향 윤곽선 추적 알고리즘을 적용하여 개별 코드를 추출한다. 추출된 개별 코드 인식은 개선된 RBF 네트워크를 제안하여 적용한다. 제안된 RBF 네트워크는 퍼지 논리 접속 연산자를 이용하여 경계변수를 통적으로 조정하는 개선된 퍼지 ART 알고리즘을 제안하여 RBF 네트워크의 중간층으로 적용한다. 얼굴 인증을 위해서는 얼굴 인증에 가장 보편적으로 사용되는 PCA 알고리즘을 적용한다. PCA 알고리즘은 고차원의 벡터를 저 차원의 벡터로 감량하여 전체 입력 영상들의 직교적인 공분산행렬을 계산한 후 그것의 고유 값에 따라 각 영상의 고유벡터를 구하므로 PCA 알고리즘을 적용하여 얼굴의 고유 벡터를 구한 후 특징 벡터를 추출한다. 따라서 여권 영상에서 획득되어진 얼굴 영상의 특징벡터와 데이터베이스에 있는 얼굴 영상의 특징벡터와의 거리 값을 계산하여 사진 위조 여부를 판별한다. 제안된 여권 인식 및 얼굴 인증 방법의 성능을 평가를 위하여 원본 여권에서 얼굴 부분을 위조한 여권과 기울어진 여권 영상을 대상으로 실험한 결과, 제안된 방법이 여권의 코드 인식 및 얼굴 인증에 있어서 우수한 성능이 있음을 확인하였다.

  • PDF

Automatic facial expression generation system of vector graphic character by simple user interface (간단한 사용자 인터페이스에 의한 벡터 그래픽 캐릭터의 자동 표정 생성 시스템)

  • Park, Tae-Hee;Kim, Jae-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.8
    • /
    • pp.1155-1163
    • /
    • 2009
  • This paper proposes an automatic facial expression generation system of vector graphic character using gaussian process model. Proposed method extracts the main feature vectors from twenty-six facial data of character redefined based on Russell's internal emotion state. Also by using new gaussian process model, SGPLVM, we find low-dimensional feature data from extracted high-dimensional feature vectors, and learn probability distribution function (PDF). All parameters of PDF are estimated by maximization the likelihood of learned expression data, and these are used to select wanted facial expressions on two-dimensional space in real time. As a result of simulation, we confirm that proposed facial expression generation tool is working in the small facial expression datasets and can generate various facial expressions without prior knowledge about relation between facial expression and emotion.

  • PDF

Class Discriminating Feature Vector-based Support Vector Machine for Face Membership Authentication (얼굴 등록자 인증을 위한 클래스 구별 특징 벡터 기반 서포트 벡터 머신)

  • Kim, Sang-Hoon;Seol, Tae-In;Chung, Sun-Tae;Cho, Seong-Won
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.1
    • /
    • pp.112-120
    • /
    • 2009
  • Face membership authentication is to decide whether an incoming person is an enrolled member or not using face recognition, and basically belongs to two-class classification where support vector machine (SVM) has been successfully applied. The previous SVMs used for face membership authentication have been trained and tested using image feature vectors extracted from member face images of each class (enrolled class and unenrolled class). The SVM so trained using image feature vectors extracted from members in the training set may not achieve robust performance in the testing environments where configuration and size of each class can change dynamically due to member's joining or withdrawal as well as where testing face images have different illumination, pose, or facial expression from those in the training set. In this paper, we propose an effective class discriminating feature vector-based SVM for robust face membership authentication. The adopted features for training and testing the proposed SVM are chosen so as to reflect the capability of discriminating well between the enrolled class and the unenrolled class. Thus, the proposed SVM trained by the adopted class discriminating feature vectors is less affected by the change in membership and variations in illumination, pose, and facial expression of face images. Through experiments, it is shown that the face membership authentication method based on the proposed SVM performs better than the conventional SVM-based authentication methods and is relatively robust to the change in the enrolled class configuration.