• Title/Summary/Keyword: 특징맵

Search Result 269, Processing Time 0.03 seconds

Smart Social Grid System using Interactive Sketch Map (인터랙티브 스케치맵을 활용한 스마트 소셜 그리드 시스템)

  • Kim, Jung-Sook;Lee, Hee-Young;Lee, Ya-Ree;Kim, Bo-Won
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.3
    • /
    • pp.388-397
    • /
    • 2012
  • Recently, one of the received attraction fields in web based service is 'Human Relationship Service' that is called SNS. This relationship map service is able to deliver information to user more easily and visually because it is intuitive data that is linked with offline real world. While past map service put physical real information in the map, present map service is evolving into new communicative platform that expresses social relationship beyond simple search platform that shows real world. In this paper, we propose smart social grid system using sketch map that is based on online map service structure. This system has features such as standardized interface provision for various SNS, use to governance hub tool in case of establishing a personal network through expanded social grid, a role of bridge to mashup software linked with other SNS, user environment construction that reproduces social grid data, and the faster service setup by improved search technology.

Real-Time Image-Based Relighting for Tangible Video Teleconference (실감화상통신을 위한 실시간 재조명 기술)

  • Ryu, Sae-Woon;Parka, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.14 no.6
    • /
    • pp.807-810
    • /
    • 2009
  • This paper deals with a real-time image based relighting system for tangible video teleconference. The proposed image based relighting system renders the extracted human object using the virtual environmental images. The proposed system can homogenize virtually the lighting environments of remote users on the video teleconference, or render the humans like they are in the virtual places. To realize the video teleconference, the paper obtains the 3D object models of users in real-time using the controlled lighting system. In this paper, we use single color camera and synchronized two directional flash lights. Proposed system generates pure shading images using on and off flash images subtraction. One pure shading reflectance map generates a directional normal map from multiplication of each reflectance map and basic normal vector map. Each directional basic normal map is generated by inner vector calculation of incident light vector and camera viewing vector. And the basic normal vector means a basis component of real surface normal vector. The proposed system enables the users to immerse video teleconference just as they are in the virtual environments.

BSR (Buzz, Squeak, Rattle) noise classification based on convolutional neural network with short-time Fourier transform noise-map (Short-time Fourier transform 소음맵을 이용한 컨볼루션 기반 BSR (Buzz, Squeak, Rattle) 소음 분류)

  • Bu, Seok-Jun;Moon, Se-Min;Cho, Sung-Bae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.4
    • /
    • pp.256-261
    • /
    • 2018
  • There are three types of noise generated inside the vehicle: BSR (Buzz, Squeak, Rattle). In this paper, we propose a classifier that automatically classifies automotive BSR noise by using features extracted from deep convolutional neural networks. In the preprocessing process, the features of above three noises are represented as noise-map using STFT (Short-time Fourier Transform) algorithm. In order to cope with the problem that the position of the actual noise is unknown in the part of the generated noise map, the noise map is divided using the sliding window method. In this paper, internal parameter of the deep convolutional neural networks is visualized using the t-SNE (t-Stochastic Neighbor Embedding) algorithm, and the misclassified data is analyzed in a qualitative way. In order to analyze the classified data, the similarity of the noise type was quantified by SSIM (Structural Similarity Index) value, and it was found that the retractor tremble sound is most similar to the normal travel sound. The classifier of the proposed method compared with other classifiers of machine learning method recorded the highest classification accuracy (99.15 %).

Image Coding Using DCT Map and Binary Tree-structured Vector Quantizer (DCT 맵과 이진 트리 구조 벡터 양자화기를 이용한 영상 부호화)

  • Jo, Seong-Hwan;Kim, Eung-Seong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.1 no.1
    • /
    • pp.81-91
    • /
    • 1994
  • A DCT map and new cldebook design algorithm based on a two-dimension discrete cosine transform (2D-DCT) is presented for coder of image vector quantizer. We divide the image into smaller subblocks, then, using 2D DCT, separate it into blocks which are hard to code but it bears most of the visual information and easy to code but little visual information, and DCT map is made. According to this map, the significant features of training image are extracted by using the 2D DCT. A codebook is generated by partitioning the training set into a binary tree based on tree-structure. Each training vector at a nonterminal node of the binary tree is directed to one of the two descendants by comparing a single feature associated with that node to a threshold. Compared with the pairwise neighbor (PPN) and classified VQ(CVQ) algorithm, about 'Lenna' and 'Boat' image, the new algorithm results in a reduction in computation time and shows better picture quality with 0.45 dB and 0.33dB differences as to PNN, 0.05dB and 0.1dB differences as to CVQ respectively.

  • PDF

The Technical Trend and Prospect of Platform Integration for Smart Grid System (스마트 그리드 환경의 통합 플랫폼 구현을 위한 기술현황 및 전망)

  • Choi, Seung-Hwan;Oh, Do-Eun;Kim, Young-Il;Kim, Young-Jun;Kang, Shin-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1977-1978
    • /
    • 2011
  • 스마트그리드는 기존의 전력망에 정보통신 기술을 융합하여 공급자와 소비자가 양방향으로 실시간 전력 정보를 교환함으로써 에너지 효율을 최적화 하고자 하는 차세대 전력망이다. 기존의 공급자 중심의 일방향성, 폐쇄성, 획일적인 전력망에서 수요자 중심의 양방향성, 개방성을 특징으로 하며 다양한 서비스를 제공하게 된다. 스마트그리드의 운영환경에서의 비즈니스 모델에 따라 기존 서비스 플랫폼과 신규 서비스 플랫폼을 융합할 수 있는 정보통합 체계가 구축되어야 한다. 또한 이종 플랫폼을 융합할 수 있는 적응 모듈이 체계적으로 설계되어야 하며, 이종 체계간 상호운용성 확보는 필수사항이다. 한편 우리나라는 기후변화 등 범 세계적인 이슈에 대응하기 위하여 저탄소 녹색성장, 에너지 효율향상 및 신성장 동력 창출을 위하여 국가 전략 로드맵을 수립하고 국가 단위의 실증사업을 통한 선제적 대응에 총력을 다하고 있다. 실제로 국가 로드맵과 실증사업은 지능형 전력망, 지능형 소비자, 지능형 운송, 지능형 신재생, 지능형 전력서비스의 5개 분야의 응용서비스 영역 기반으로 나누어져 각각의 서비스 플랫폼 구조를 가지고 있으며, 이에 대한 스마트그리드 플랫폼 통합 체계 기술은 스마트그리드의 핵심 기술이다.

  • PDF

An Addaptive SAO Method for Efficient Texture Video Coding of V-PCC (V-PCC의 효율적인 Texture 영상 부호화를 위한 적응적 SAO 방법)

  • Son, Sohee;Gwon, Daehyeok;Choi, Haechul
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.1216-1217
    • /
    • 2022
  • 포인트 클라우드는 객체 또는 장면을 재구성하기 위한 3D 데이터의 표현 방식 중 하나로써 가상 및 증강 현실을 포함한 다양한 분야에서 활용되고 있다. 포인트 클라우드 데이터는 품질에 따라 수많은 포인트로 이루어질 수 있으며, 이와 관련된 데이터의 양은 2차원 영상의 데이터보다 상당히 많다. 따라서 포인트 클라우드 데이터를 사용하여 다양한 서비스를 제공하기 위해서는 포인트 클라우드의 특징을 고려한 효율적인 압축 기술이 요구되며, 이에 따라 국제 표준화 단체의 Moving Picture Experts Group은 포인트 클라우드 데이터의 효율적인 압축을 위한 V-PCC 표준을 제정하였다. V-PCC는 포인트 클라우드 데이터를 다수의 2차원 공간으로 투영하여 점유 맵, 기하 영상, 그리고 속성 영상을 생성하고 각 2차원 영상을 기존의 비디오 코덱을 활용하여 압축하는 방식이다. 기존의 코덱을 사용하여 압축함에 따라 활용성이 높지만, 3차원 데이터를 다수의 2차원 영상을 통하여 압축하기 때문에 압축의 효율성을 높이기 위한 많은 연구가 필요하다. 본 논문에서는 V-PCC의 부호화 효율을 높이기 위해 점유 맵의 투영 정보를 활용한 속성 영상의 효율적인 압축 방법을 소개하고 이를 위한 적응적 SAO 방법을 제안한다. 실험에서 제안 방법은 V-PCC의 속성 영상에 대해 약 3.2%의 부호화 효율을 보인다.

  • PDF

Modified YOLOv4S based on Deep learning with Feature Fusion and Spatial Attention (특징 융합과 공간 강조를 적용한 딥러닝 기반의 개선된 YOLOv4S)

  • Hwang, Beom-Yeon;Lee, Sang-Hun;Lee, Seung-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.12
    • /
    • pp.31-37
    • /
    • 2021
  • In this paper proposed a feature fusion and spatial attention-based modified YOLOv4S for small and occluded detection. Conventional YOLOv4S is a lightweight network and lacks feature extraction capability compared to the method of the deep network. The proposed method first combines feature maps of different scales with feature fusion to enhance semantic and low-level information. In addition expanding the receptive field with dilated convolution, the detection accuracy for small and occluded objects was improved. Second by improving the conventional spatial information with spatial attention, the detection accuracy of objects classified and occluded between objects was improved. PASCAL VOC and COCO datasets were used for quantitative evaluation of the proposed method. The proposed method improved mAP by 2.7% in the PASCAL VOC dataset and 1.8% in the COCO dataset compared to the Conventional YOLOv4S.

Atrous Residual U-Net for Semantic Segmentation in Street Scenes based on Deep Learning (딥러닝 기반 거리 영상의 Semantic Segmentation을 위한 Atrous Residual U-Net)

  • Shin, SeokYong;Lee, SangHun;Han, HyunHo
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.10
    • /
    • pp.45-52
    • /
    • 2021
  • In this paper, we proposed an Atrous Residual U-Net (AR-UNet) to improve the segmentation accuracy of semantic segmentation method based on U-Net. The U-Net is mainly used in fields such as medical image analysis, autonomous vehicles, and remote sensing images. The conventional U-Net lacks extracted features due to the small number of convolution layers in the encoder part. The extracted features are essential for classifying object categories, and if they are insufficient, it causes a problem of lowering the segmentation accuracy. Therefore, to improve this problem, we proposed the AR-UNet using residual learning and ASPP in the encoder. Residual learning improves feature extraction ability and is effective in preventing feature loss and vanishing gradient problems caused by continuous convolutions. In addition, ASPP enables additional feature extraction without reducing the resolution of the feature map. Experiments verified the effectiveness of the AR-UNet with Cityscapes dataset. The experimental results showed that the AR-UNet showed improved segmentation results compared to the conventional U-Net. In this way, AR-UNet can contribute to the advancement of many applications where accuracy is important.

Progress and Problems in Korean Public Library Policies (한국 공공도서관정책의 추이와 과제)

  • Lee, Jae-Whoan
    • Journal of Korean Library and Information Science Society
    • /
    • v.47 no.1
    • /
    • pp.21-46
    • /
    • 2016
  • The purpose of this article is to discuss about the progress and problems in Korean public library policies. The emphasis is on identifying both distinctive features and indigenous limitations in Korean Library Act and National Plans for Library Development. This article also investigates the current status and weakness of major policy driving forces such as national library policy committee(President's Committee on Library and Information Policy), administrative support organization, and professional associations. Finally suggested are both strategies and methods for promoting the quality of Korean public library policies, with focusing on enhancing public librarians' capacity of policy participation.

B-snake Based Lane Detection with Feature Merging and Extrinsic Camera Parameter Estimation (특징점 병합과 카메라 외부 파라미터 추정 결과를 고려한 B-snake기반 차선 검출)

  • Ha, Sangheon;Kim, Gyeonghwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.215-224
    • /
    • 2013
  • This paper proposes a robust lane detection algorithm for bumpy or slope changing roads by estimating extrinsic camera parameters, which represent the pose of the camera mounted on the car. The proposed algorithm assumes that two lanes are parallel with the predefined width. The lane detection and the extrinsic camera parameter estimation are performed simultaneously by utilizing B-snake in motion compensated and merged feature map with consecutive sequences. The experimental results show the robustness of the proposed algorithm in various road environments. Furthermore, the accuracy of extrinsic camera parameter estimation is evaluated by calculating the distance to a preceding car with the estimated parameters and comparing to the radar-measured distance.