An Addaptive SAO Method for Efficient Texture Video Coding of V-PCC

V-PCC의 효율적인 Texture 영상 부호화를 위한 적응적 SAO 방법

  • Published : 2022.06.20

Abstract

포인트 클라우드는 객체 또는 장면을 재구성하기 위한 3D 데이터의 표현 방식 중 하나로써 가상 및 증강 현실을 포함한 다양한 분야에서 활용되고 있다. 포인트 클라우드 데이터는 품질에 따라 수많은 포인트로 이루어질 수 있으며, 이와 관련된 데이터의 양은 2차원 영상의 데이터보다 상당히 많다. 따라서 포인트 클라우드 데이터를 사용하여 다양한 서비스를 제공하기 위해서는 포인트 클라우드의 특징을 고려한 효율적인 압축 기술이 요구되며, 이에 따라 국제 표준화 단체의 Moving Picture Experts Group은 포인트 클라우드 데이터의 효율적인 압축을 위한 V-PCC 표준을 제정하였다. V-PCC는 포인트 클라우드 데이터를 다수의 2차원 공간으로 투영하여 점유 맵, 기하 영상, 그리고 속성 영상을 생성하고 각 2차원 영상을 기존의 비디오 코덱을 활용하여 압축하는 방식이다. 기존의 코덱을 사용하여 압축함에 따라 활용성이 높지만, 3차원 데이터를 다수의 2차원 영상을 통하여 압축하기 때문에 압축의 효율성을 높이기 위한 많은 연구가 필요하다. 본 논문에서는 V-PCC의 부호화 효율을 높이기 위해 점유 맵의 투영 정보를 활용한 속성 영상의 효율적인 압축 방법을 소개하고 이를 위한 적응적 SAO 방법을 제안한다. 실험에서 제안 방법은 V-PCC의 속성 영상에 대해 약 3.2%의 부호화 효율을 보인다.

Keywords

Acknowledgement

This work was supported by Institute of Information & communications Technology Planning & Evaluation(IITP) grant funded by the Korea government(MSIT) (No.2020-0-00452, Development of Adaptive Viewer-centric Point Cloud AR/VR(AVPA) Streaming Platform)