• Title/Summary/Keyword: 특징값 추출

Search Result 951, Processing Time 0.033 seconds

Correspondence and clustering using color features (칼라 특징 값을 이용한 correspondence 와 clustering)

  • 김성동;진성아;주문원
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2001.11a
    • /
    • pp.177-181
    • /
    • 2001
  • 본 논문에서는 칼라차 영상을 이용하여 물체들의 움직임을 분석하고 이동 형태들의 대한 RGB 특징 값을 추출하였으며 그 동안 미해결 과제로 남았던 이동 물체들 사이의 영역정합(matching)과 군집화 (clustering)를 이용하여 대응(Correspondence)관계를 확인하는 문제를 해결하여 이동 물체들을 추구하여 보았다.

  • PDF

Facial Feature Extraction and Tracking using Edge Information and Template Deformation (에지 정보와 형판 변형을 이용한 얼굴 특징 추출과 특지의 추적)

  • 박주철;최형일
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.157-160
    • /
    • 1998
  • 본 논문에서는 동영상으로부터 에지 정보와 형판 변형을 통해 얼굴의 추출하고 그 특징을 기반으로 하는 추적 기법을 제안한다. 본 논문에서 제안하는 추적기법은 추출된 특징에 기반을 추적 지법으로 초기에 모자익 영상을 이용하여 얼굴 부분을 찾고 찾아진 얼굴 부분에 에지 연산자를 적용하여 에지를 추출한다. 에지 영상이 얻어지면 에지 영상에서 영역의 크기와 모양, 그리고 관계 검증을 통해 대략적인 눈 영역을 추출한다. 눈 영역이 찾아지면 이를 바탕으로 입 영역에 대한 후보 영역에 대하여 이진화를 수행하고 히스토그램 프로젝션을 통해 대략적인 입 영역을 추출한다. 추출된 눈 영역과 입 영역에 각각의 형판을 사용해 형판 변형을 하고 초기 매개변수를 추출한다. 추출된 매개변수는 다음 프레임에서 형판의 초기 값으로 사용된다. 그리고 나서 형판에 대하여 변형(deformation) 과정을 수행한다. 이 과정을 반복함으로써 추적 과정을 수행한다.

  • PDF

Enhanced shot boundary detection using MPEG-7 descriptors (MEPG-7 서술자를 이용한 향상된 샷 경계 검출)

  • 강호경;노용만
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2271-2274
    • /
    • 2003
  • 본 논문에서는 MPEG-7 서술자들을 이용하여 효과적인 샷 경계 검출을 수행하는 방법에 대하여 제안한다. 기존의 샷 경계를 분석하는 방법은 기본적으로 각 프레임의 특징을 추출하여 거리 비교를 통하여 샷을 검출한다. 그러나 이러한 샷 검출은 각 프레임에서의 한가지 특징만을 이용하여 샷 경계를 찾기 때문에 샷의 변화와 프레임에 대한 특징 값의 변화가 일치하지 않는 경우 문제점이 발생된다 이러한 문제점을 해결하기 위하여 MPEG-7 표준을 통하여 그 성능이 증명된 다양한 특징들을 동시에 이용하여 정확한 샷 경계를 추출하는 방법을 제안한다. 실험결과 제안한 방법은 급격한 샷 변화와 점진적인 샷 변화를 동시에 검출하고 플레쉬와 같은 비디오의 순간적인 변화에 강인하였다.

  • PDF

A Study on Classification of Types of Vehicles using Texture Features (질감특성을 이용한 차종 식별에 관한 연구)

  • Kim, Kyong-Wook;Lee, Hyo-Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.05a
    • /
    • pp.737-740
    • /
    • 2004
  • 본 논문에서는 차종 식별을 위해 차량 영상의 질감 특징을 사용하였다. 차량의 질감 특징 정보를 얻기 위한 관심영역으로 라디에이터 그릴 부분을 선택하였다. 추출된 관심영역으로부터 GLCM(Gray Level Co-occurrence Matrix)을 사용하여 질감 특징 값을 추출하였고, 그 특징 값들을 입력으로 취하는 3층의 신경회로망을 구성한 후 역전파 학습 알고리즘을 사용하여 학습을 시켜서 차종 식별을 시도하였다.

  • PDF

Passport Recognition using PCA-based Face Verification and SOM Algorithm (PCA 기반 얼굴 인증과 SOM 알고리즘을 이용한 여권 인식)

  • Lee Sang-Soo;Jang Do-Won;Kim Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.285-290
    • /
    • 2006
  • 본 논문에서는 출입국자 관리의 효율성과 체계적인 출입국 관리를 위하여 여권 코드를 자동으로 인식하고 위조 여권을 판별할 수 있는 여권 인식 및 얼굴 인증 방법을 제안한다. 본 논문의 구성은 여권 인식과 얼굴 인증 부분으로 구성되며, 여권 인식 부분에서는 소벨 연산자, 수평 최소값 필터 등을 적용한 후, 8 방향 윤곽선 추적 알고리즘을 적용하여 코드의 문자열 영역을 추출하고 기울기를 보정한다. 추출된 문자열은 반복 이진화 방법을 적용하여 코드의 문자열 영역을 이진화 한다. 이진화된 문자열 영역에 대해 8 방향 윤곽선 추적 알고리즘을 적용하여 개별 코드를 추출한 후에 SOM(Self-Organizing Maps) 알고리즘을 적용하여 여권 코드를 인식한다. 얼굴 인증 부분에서는 여권 사진 영역의 특징을 이용하여 얼굴 후보 영역을 추출한 후, RGB와 YCbCr 색공간에서 피부색 정보를 이용하여 얼굴 영역을 추출한다. 추출된 얼굴 영역은 PCA(Principal Component Analysis) 알고리즘을 적용하여 특징 벡터를 구하고 여권 코드가 인식된 결과를 바탕으로 여권 소지자의 데이터 베이스에 있는 얼굴 영상의 특징벡터와의 거리 값을 계산하여 사진 위조 여부를 판별한다. 제안된 여권 인식 및 얼굴 인증 방법의 성능 평가를 위하여 원본 여권의 얼굴 부분을 위조한 여권과 기울어진 여권 영상을 대상으로 실험한 결과, 제안된 방법이 여권의 코드 인식 및 얼굴 인증에 있어서 우수한 성능이 있음을 확인하였다.

  • PDF

Comparison of Accuracy for Chromosome Classification using Different Feature Extraction Methods based on Density Profile (Density Profile 추출 방법에 따른 염색체 분류정확도 비교분석)

  • Choi, Kwang-Won;Song, Hae-Jung;Kim, Jong-Dae;Kim, Yu-Seop;Lee, Wan-Yeon;Park, Chan-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.226-229
    • /
    • 2010
  • 본 연구에서는 다양한 density profile 특징추출에 기반한 염색체 자동분류방법들의 성능을 비교분석하였다. density profile은 염색체의 밴드패턴을 가장 잘 표현한 특징으로 염색체의 중심축을 구성하는 화소들의 밝기 값을 추출하는 방법이다. 염색체의 밴드패턴은 염색체의 끝단까지를 잘 표현해주어야만 정확한 염색체번호를 확인할 수 있다. 따라서 염색체의 중심축을 추출하여 염색체 끝단까지 확장 처리한 방법에 대한 성능을 확인하였다. 염색체 중심축에 위치한 화소만을 이용한 프로파일은 잡음에 민감할 수 있으므로 이를 해결하기 위하여 염색체의 중심축에 대한 화소 값 대신 주변 밝기 값들에 대한 평균을 이용한 국소평균방법과 중심축의 수직라인 상에 존재하는 화소 값들에 대한 평균을 구한 수직평균방법을 비교하였다. 분류알고리즘은 k-NN을 사용하였고, 실험데이터는 (주)Gendix 로부터 제공받은 임상적으로 정상인 100명(남자 50명, 여자 50명)으로부터 추출한 4600개의 염색체 영상을 훈련데이터와 테스트데이터로 각각 50%씩 랜덤하게 분리하여 실험하였다. 실험결과 중심축을 확장하고 수직평균에 대한 프로파일을 특징으로 추출하여 분류한 경우가 가장 좋은 성능을 보였다.

  • PDF

Image Retrieval using Local Color Histogram and Shape Feature (지역별 색상 분포 히스토그램과 모양 특징을 이용한 영상 검색)

  • 정길선;김성만;이양원
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.50-54
    • /
    • 1999
  • This paper is proposed to image retrieval system using color and shape feature. Color feature used to four maximum value feature among the maximum value extracted from local color distribution histogram. The preprocessing of shape feature consist of edge extraction and weight central point extraction and angular sampling. The sum of distance from weight central point to contour and variation and max/min used to shape feature. The similarity is estimated compare feature of query image with the feature of images in database and the candidate of image is retrieved in order of similarity. We evaluate the effectiveness of shape feature and color feature in experiment used to two hundred of the closed image. The Recall and the Precision is each 0.72 and 0.53 in the result of average experiment. So the proposed method is presented useful method.

  • PDF

Gesture Recognition using MHI Shape Information (MHI의 형태 정보를 이용한 동작 인식)

  • Kim, Sang-Kyoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.4
    • /
    • pp.1-13
    • /
    • 2011
  • In this paper, we propose a gesture recognition system to recognize motions using the shape information of MHI (Motion History Image). The system acquires MHI to provide information on motions from images with input and extracts the gradient images from such MHI for each X and Y coordinate. It extracts the shape information by applying the shape context to each gradient image and uses the extracted pattern information values as the feature values. It recognizes motions by learning and classifying the obtained feature values with a SVM (Support Vector Machine) classifier. The suggested system is able to recognize the motions for multiple people as well as to recognize the direction of movements by using the shape information of MHI. In addition, it shows a high ratio of recognition with a simple method to extract features.

3D Face Recognition using Wavelet Transform Based on Fuzzy Clustering Algorithm (펴지 군집화 알고리즘 기반의 웨이블릿 변환을 이용한 3차원 얼굴 인식)

  • Lee, Yeung-Hak
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.11
    • /
    • pp.1501-1514
    • /
    • 2008
  • The face shape extracted by the depth values has different appearance as the most important facial information. The face images decomposed into frequency subband are signified personal features in detail. In this paper, we develop a method for recognizing the range face images by multiple frequency domains for each depth image using the modified fuzzy c-mean algorithm. For the proposed approach, the first step tries to find the nose tip that has a protrusion shape on the face from the extracted face area. And the second step takes into consideration of the orientated frontal posture to normalize. Multiple contour line areas which have a different shape for each person are extracted by the depth threshold values from the reference point, nose tip. And then, the frequency component extracted from the wavelet subband can be adopted as feature information for the authentication problems. The third step of approach concerns the application of eigenface to reduce the dimension. And the linear discriminant analysis (LDA) method to improve the classification ability between the similar features is adapted. In the last step, the individual classifiers using the modified fuzzy c-mean method based on the K-NN to initialize the membership degree is explained for extracted coefficient at each resolution level. In the experimental results, using the depth threshold value 60 (DT60) showed the highest recognition rate among the extracted regions, and the proposed classification method achieved 98.3% recognition rate, incase of fuzzy cluster.

  • PDF

Implementation of Image-Retrieval System Using Automatic Object Region Extraction and Property of GLCM-based Texture (자동 객체 영역 추출과 GLCM 기반 Texture특징을 이용한 영상 검색 시스템 구현)

  • Kim, Seong-Bin
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.255-257
    • /
    • 2008
  • 본 논문에서는 최근 IT 기술의 발전에 따라 무수히 양산되고 있는 멀티미디어 데이터를 효율적으로 검색하기 위한 방법을 제안한다. 영상 검색 시스템에 사용되는 데이터베이스(DB) 영상들에 존재하는 각 객체들의 존재 영역을 기반으로 질의 영상 (query image)의 객체 영역을 추정해서 검색에 활용하는 것이다. 이는 질의 영상의 전체 영역으로부터 객체를 추정하는 것보다 데이터베이스 영상들로부터 추출한 통계적 객체 분포 범위를 기반으로 추정하기 때문에 빨리 객체 추출이 가능하도록 한다. 따라서 객체를 추출하기 위한 배경 지식이나, 사용자 입력이 전혀 필요 없다. 이렇게 추출된 객체 영역의 영상들로부터 GLCM 알고리즘을 이용해서 객체 영역의 특성이 잘 반영된 질감 특징 값을 바탕으로 검색에 활용 할 경우 원본 영상의 질감 특징을 활용한 경우보다, 객체의 질감 특징을 더 잘 반영한다는 것을 실험을 통해 확인할 수 있었다.

  • PDF