• 제목/요약/키워드: 특징값

검색결과 2,975건 처리시간 0.032초

적은 수의 특징점을 이용한 얼굴 영상 복원 (Face Reconstruction Using a Small Set of Feature Points)

  • 황본우;이성환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 봄 학술발표논문집 Vol.27 No.1 (B)
    • /
    • pp.583-585
    • /
    • 2000
  • 본 논문에서는 적은 수의 특징점을 이용한 얼굴 복원 방법을 제안한다. 먼저 얼굴을 형태와 질갑 프로토타입들의 선형 중첩으로 모형화한 다음, 특징점에서의 형태와 질감정보만을 가지고 각각의 얼굴이 요구하는 변형의 근사값을 찾는다. 본 논문에서는 이러한 under-determined 조건에서 최소 제곱법(least square minimization method)을 사용하여 최적값을 얻는다. 실험을 통하여 적은 수의 특징점을 이용하여 2차원 얼굴 영상을 효율적으로 복원할 수 있음을 검증하였다. 우리는 제안된 얼굴 영상을 압축하거나 겹침이나 잡영에 의해 손상된 영상으로부터 원래의 전체 정보를 복원하는데 중요한 역할을 할 수 있을 것으로 기대한다.

  • PDF

가변 참조 구간에서의 적응적 임계값 설정 방법을 이용한 장면 전환 검출 기술과 PMP에서의 구현 (Shot Change Detection Technique Using Adaptive Threshold Setting Method on Variable Reference Block and Implementation on PMP)

  • 김원희;문광석;김종남
    • 한국멀티미디어학회논문지
    • /
    • 제12권3호
    • /
    • pp.354-361
    • /
    • 2009
  • 장면 전환 검출은 비디오 분할의 주요 기술로서 하드웨어에서 구현하기 위해서는 실시간 및 자동적 처리가 만족되어야 한다. 현재까지 PMP나 핸드폰 같은 낮은 하드웨어 성능의 단말기에서 실시간으로 적용 가능한 장면 전환 검출 기술은 거의 없다. 이와 같은 단말기들에서 장면 전환 검출의 실시간 적용을 위하여, 본 논문에서는 가변 참조 구간의 적응적 임계값 설정 방법을 이용한 장면 전환 검출 기술을 제안한다. 제안하는 방법은 현재 프레임의 특징값과 가변 참조 구간의 평균 특징값을 비교하여 장면 전환 유무를 결정한다. 제안하는 방법은 프레임의 특징값에 독립적으로 사용할 수 있으며, 가변 참조 구간 동안의 평균 특징값을 이용하여 자동적인 임계값 설정이 가능하다. 동일한 영상에 대한 실험을 통하여 기존의 방법들보다 최고 정확도(precision)에서 0.146, 회수도(recall)에서 0.083, F1에서 0.089 이상 결과가 향상된 것을 확인하였다. 제안한 실시간 SCD 모델을 H사의 PMP에 적용하여 실시간 장면 전환 검출이 가능한 것을 검증하였다. 제안한 방법은 PMP나 핸드폰 같은 휴대용 미디어 재생 장치에서 비디오 데이터를 검색할 때 유용하게 사용될 수 있다.

  • PDF

은닉노드의 특징 값을 기반으로 한 최적신경망 구조의 BPN성능분석 (Performance Analysis of Optimal Neural Network structural BPN based on character value of Hidden node)

  • 강경아;이기준;정채영
    • 한국컴퓨터정보학회논문지
    • /
    • 제5권2호
    • /
    • pp.30-36
    • /
    • 2000
  • 은닉노드는 주어진 문제에서 입력패턴(input pattern)들의 특징을 구분해주는 중요한 역할을 한다. 이 때문에 최적의 은닉노드 수로 구성된 신경망 구조가 성능에 가장 큰 영향을 주는 요인으로 중요성이 대두되고 있다. 그러나 역전파(back-propagation) 학습 알고리즘을 기반으로 하여 은닉노드 수를 결정하는데는 문제점이 있다. 은닉노드 수가 너무 적게 지정되면 주어진 입력패턴을 충분히 구분할 수 없게 되어 완전한 학습이 이루어지지 않는 반면, 너무 많이 지정하면 불필요한 연산의 실행과 기억장소의 낭비로 과적응(overfitting)이 일어나 일반성이 떨어져 인식률이 낮아지기 때문이다. 따라서 본 논문에서는 백 프로퍼게이션 알고리즘을 이용하여 학습을 수행하는 다층 신경망의 학습오차 감소와 수렴율 개선을 위하여 신경망을 구성하는 매개변수를 가지고 은닉노드의 특징 값을 구하고, 그 값은 은닉노드를 제거(pruning)하기 위한 평가치로 사용된다. 구해진 특징 값 중 최대 값과 최소 값을 갖는 노드를 감소(pruning)대상에서 제외하고 나머지 은닉노드 특징 값의 평균과 각 은닉노드의 특징 값을 비교하여 평균보다 작은 특징 값을 갖는 은닉노드를 pruning시키므로서 다층 신경망의 최적 구조를 결정하여 신경망의 학습 속도를 개선하고자 한다.

  • PDF

딥러닝 합성곱 신경망을 이용한 효율적인 홍채인식 (Efficient Iris Recognition using Deep-Learning Convolution Neural Network)

  • 최광미;정유정
    • 한국전자통신학회논문지
    • /
    • 제15권3호
    • /
    • pp.521-526
    • /
    • 2020
  • 본 논문은 홍채영상의 이동불변의 특징값 을추출에 탁월한 고차 국소 자동 상관함수를 적용하여 25개의 특징 값을 입력 값으로 적용한 일반적인 HOLP 신경망에 특징 값 25개의 평균값을 추가한 개선된 HOLP 신경망을 구현하여 인식률을 확인하여 보았다. 종류가 상이한 딥러닝 구조들과 비교하였을 때 음성과 영상분야에서 탁월한 성능을 보이는 Back-Propagation 신경망과 특징 추출기와 분류기를 통합한 합성 곱 신경망을 활용하여 홍채인식의 인식률을 비교하여 보았다.

중간 시점 영상 생성 기술 설계 및 구현 (Design and implementation of interpolated view video)

  • 이의상;박성환;김준식;김상일;김규헌
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2018년도 하계학술대회
    • /
    • pp.313-316
    • /
    • 2018
  • 최근 미디어의 생성 및 소비 기술의 발전으로 몰입도 있는 콘텐츠에 대한 수요가 증가하고 있다. View Interpolation 기술은 두 개의 좌/우 영상을 기반으로 하여 두 영상의 중간 시점에 해당하는 영상을 생성해내는 기술이다. 먼저 Depth Hole Filling Module을 이용하여 좌/우 영상 및 그에 대응하는 깊이 지도를 입력으로 받아 깊이 지도에 존재하는 오류를 검출하고, 보정한다. 깊이 지도의 오류 보정이 완료되면, 해당 데이터를 각각 Feature Matching Module 및 Layer Dividing Module로 전달한다. Feature Matching Module은 실사 영상 내의 특징점들을 검출하고, 두 영상 내 특징점을 매칭하는 역할을 수행하며, Layer Dividing Module은 깊이 값을 기반으로 영상의 Layer를 분할한다. Feature Matching Module에서 특징점의 매칭이 완료되면, 특징점의 영상 내 좌표 및 해당 좌표에서의 깊이 값을 Distance Estimating Module로 전달한다. Distance Estimating Module은 전달받은 특징점의 좌표 및 해당 좌표에서의 깊이 값을 기반으로 전체 깊이 값에서의 이동도를 계산한다. 이와 같이 이동도의 계산 및 Layer 분할이 완료되면, 각 Layer를 이동도에 기반하여 이동시키고, 이동된 Layer들을 포개어 배치함으로써 View interpolation을 완성한다.

  • PDF

스테레오 영상의 정합값을 통한 얼굴특징 추출 방법 (Face Feature Extraction Method ThroughStereo Image's Matching Value)

  • 김상명;박장한;남궁재찬
    • 한국멀티미디어학회논문지
    • /
    • 제8권4호
    • /
    • pp.461-472
    • /
    • 2005
  • 본 논문에서는 스테레오 영상의 정합값(matching)을 통한 얼굴 특징추출 알고리즘을 제안한다. 제안된 알고리즘에서는 얼굴색상 정보의 RGB컬러공간을 YCbCr컬러공간으로 변환하여 얼굴영역 검출하였다. 추출된 얼굴영역으로부터 눈 형판(template)을 적용하여 눈 사이의 거리와 기울어짐, 코와 입에 대한 특징의 기하학적인 특징 벡터를 추출하였다. 또한 제안한 방법은 2차원 특징정보 뿐만 아니라 스테레오 영상의 정합을 통한 얼굴의 눈, 코, 입의 특징을 추출할 수 있었다. 실험을 통하여 약 1m이내 거리에서 73%의 일치율을 보였고, 약 1m이후 거리에선 52%의 일치율을 보였다.

  • PDF

모바일 환경 응용을 위한 코너 특징점 기반의 회전 객체 검출 (Rotated object recognition based on corner feature points in mobile environment)

  • 김대환;박금춘;김신덕
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2013년도 제48차 하계학술발표논문집 21권2호
    • /
    • pp.23-26
    • /
    • 2013
  • 최근 모바일 장치의 영상 데이터 처리 능력 확대와 더불어 사용자가 요구하는 다양한 영상 데이터의 효율적인 인식 기술 연구가 요구되어지고 있다. 모바일 환경은 고성능 PC 환경과 달리 저사양의 CPU와 메모리를 탑재하고 있어, 영상에서 원하는 객체를 인식하기 위한 기존의 방법론으로는 사용자 요구를 실시간으로 충족하기 어려운 부분이 존재한다. 이에 모바일 환경에 맞는 객체 인식 방법론의 개발이 요구된다. 모바일 환경에서 실시간으로 객체 인식을 하기 위하여, 본 논문에서는 객체 코너 정보를 이용한 Harris corner detector[1]로부터 객체의 특징점을 추출하고, 이를 바탕으로 하여 영상내의 객체 정보 인식 방법을 제안한다. 제안하는 방법에 의해, 입력 영상에서 객체의 코너 정보를 빠르게 추출, 기존 특징점과의 비교를 통하여 영상 내부의 객체 인식을 진행한다. 일반적으로, 회전된 특징점 객체의 정보는 객체의 회전 정도에 따라 코너 픽셀 색상 정보의 변화가 발생하게 된다. 특징점의 색상값은 객체의 회전 정도에 영향을 받아 주변의 픽셀값과 혼합되는 특성이 존재한다. 본 논문에서는 회전 변경된 픽셀 색상값의 영향을 분석하여, 회전된 객체의 특징점 추출 및 객체 검출에 반영하도록 하여, 영상 내부의 회전된 객체 검출의 수행에 효과적으로 이용될 수 있도록 한다. 특징점의 코너 정보를 이용하여 객체를 인식하는 것은, 객체의 인식률은 다소 감소하더라도 모바일 환경에서 계산량의 감소를 통한 실시간 활용이 가능하도록 한다. 이러한 특성은 저성능 CPU와 메모리에서도 회전된 객체의 인식을 수행할 수 있게 하는데 상당히 효과적이다.

  • PDF

HSI 정보와 얼굴 특징자들의 기하학적 특징각을 이용한 얼굴 인식 알고리즘 (Human Face Recognition Algorithm Using HSI Informations and Geometrical Feature Angle of Face Features)

  • 김영일;김정훈;이응주
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2001년도 춘계학술발표논문집 (하)
    • /
    • pp.859-862
    • /
    • 2001
  • 본 논문에서는 칼라 CCB 카메라로부터 입력된 얼굴 영상에서 HSI 정보와 눈, 코, 입 등의 얼굴 영역 특징자 및 특징자의 기하학적 특징각을 이용한 얼굴 인식 알고리즘을 제안하였다. 제안한 알고리즘에서는 인간의 시각 체계와 비교적 유사한 HSI좌표계 상에서 피부색에 대한 색상 정보와 명암값 정보를 함에 이용함으로써 얼굴영역 추출의 효율을 높였고, 또한 추출된 얼굴 영역에서 얼굴 인식율 개선을 위해 눈, 코, 입 등의 구조적 위치 정보와 특징자들의 기하학적 특징각을 이용하여 얼굴 인식율을 개선하였다. 제안한 알고리즘에서는 기존의 명암 정보를 이용하는 방법과는 달리 색상 정보와 명암 정보를 함께 이용함으로써 정확한 얼굴 영역의 검출이 가능하였으며 인식 방법에 있어서 특징자들의 기하학적 관계값을 이용함으로써 인식 효율을 개선하였다.

  • PDF

Wavelet 변환과 질감 특성을 이용한 내용기반 영상 검색 (Conten-Based Image Retrieval Using Wavelet and Texture)

  • 이현운;전준철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2000년도 제13회 춘계학술대회 및 임시총회 학술발표 논문집
    • /
    • pp.1051-1055
    • /
    • 2000
  • 본 연구에서는 내용기반 영상 데이터 검색을 위하여 변환 영역에서 위치 정보와 주파수 정보를 가지는 웨이블릿 성질을 이용하여 객체들의 특징을 추출하는 방안인 Vector Quantization 을 이용한 영상을 검색하는 방안을 제시한다. 내용기반 영상 검색의 주요 특징들은 색상, 질감, 그리고 영상의 공간적인 특징을 고려한 특징 값 등이 사용된다. 이러한 영상의 특징들을 어떻게 결합하고 특징 추출을 하느냐에 따라 검색의 효율성에 영향을 준다. 따라서 본 연구에서는 영상의 위치 정보와 주파수 정보를 가지는 웨이블릿 변환 후 얻어지는 저대역 부밴드에서의 공간적인 특성을 고려한 특징 값을 이용하여 Vector Quantization 알고리즘에 의해 정지영상의 객체 대표 특징들을 빠르게 검색하고자 한다. 본 연구에서는 Haar Wavelet 과 Vector Quantization 에서 색상과 질감의 가중치를 적용하고자 한다.

  • PDF

특징값 기반 블록 매칭을 이용한 자동 포토 모자이크 알고리즘 (Automatic Photo Mosaic Algorithm using Feature-Based Block Matching)

  • 서성진;김기웅;조현우;이해연
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 추계학술발표대회
    • /
    • pp.357-360
    • /
    • 2011
  • 모자이크는 여러 개의 작은 영상들을 모아서 하나의 큰 영상을 만드는 것을 말한다. 본 논문에서는 모자이크 방법 중 하나인 사진을 이용하여 영상을 만드는 포토 모자이크 방법을 컴퓨터 알고리즘으로 구현하는 기술 제안을 한다. 이미지를 원하는 사이즈의 타일로 나눈 다음, 나눠진 타일을 16등분을 한다. 16등분된 이미지 각 요소들에 대하여 RGB 평균값을 계산하여 총 48개 특징값을 추출하여 데이터베이스에 저장해둔다. 그리고 타일과 비교가 될 이미지들은 이미 똑같은 작업을 통하여 데이터베이스에 저장이 되어 있다. 이렇게 저장된 값들을 통하여 유클리드 거리를 통하여 두 이미지의 유사도를 측정하게 된다. 최적의 값을 찾으면 바로 대입하는 것이 아니라 이전에 있던 타일 이미지의 명암값을 새로 삽입되는 타일에 부여를 하여, 부드러운 영상을 만들게 된다. 그리고 타일을 삽입할 때 이전에 사용된 이미지는 배열의 마지막으로 옮겨지게 되며 사용횟수를 체크하여 반복적 사용을 제한하였다.