• Title/Summary/Keyword: 특이적 마커

Search Result 131, Processing Time 0.038 seconds

RAPD-SCAR Markers Linked to Medium-Leaf Zoysiagrass Ecotypes (한국잔디 중지 변이개체와 연관된 RAPD-SCAR 마커)

  • Chung, Sung Jin;Park, Su Jeong;Kim, Hun Joong;Yang, Geun-Mo;Choi, Joon-Soo;Oh, Chan-Jin;Jang, Deok-Hwan;Song, In-Ja;Lee, Geung-Joo
    • Weed & Turfgrass Science
    • /
    • v.2 no.2
    • /
    • pp.191-197
    • /
    • 2013
  • Two medium-leaf ecotypes (CY6069, CY6097) belonging to one species (Zoysia japonica) of Korean lawngrasses were selected in sod production fields in Jang Seong, Korea. They were reported to have distinct morphological and growth rate characteristics different from the preferred medium-leaf type zoysiagrass in Korea. This study was conducted to define further the genotypic difference at the molecular level and to develop DNA marker based on the specific DNA fragment. Polymorphic DNA fragments were first explored by using randomly amplified polymorphic DNA (RAPD) primers, which were then converted into PCR-based sequence characterized amplified region (SCAR) markers. The CY6069-specific primer set amplified about 550 bp successfully, while the CY6097 marker produced the expected 690 bp band, by which those markers were nominated by CY6069_550 and CY6069_690 SCARs, respectively. Together with the reported morphological and other phenotypic features, the SCAR markers confirmed in this study will be useful to identify those medium-leaf zoysiagrass genotypes when they are cultivated with other vegetatively propagated warm-season turfgrasses in sod farms.

Comparison of the complete chloroplast genome sequence of Solanum stoloniferum with other Solanum species generates PCR-based markers specific for Solanum stoloniferum (엽록체 전장유전체 정보를 이용한 감자 야생종 Solanum stoloniferum 구별 분자 마커 개발)

  • Kim, Soojung;Park, Tae-Ho
    • Journal of Plant Biotechnology
    • /
    • v.47 no.2
    • /
    • pp.131-140
    • /
    • 2020
  • Solanum stoloniferum, one of the wild tetraploid Solanum species belonging to the Solanaceae family, is an excellent resource for potato breeding owing to its resistance to several important pathogens. However, the sexual hybridization of S. stoloniferum with S. tuberosum (potato) is hampered due to the sexual incompatibility between the two species. To overcome this and introgress the various novel traits of S. stoloniferum in cultivated potatoes, cell fusion can be performed. The identification of the fusion products is crucial and can be achieved with the aid of molecular markers. In this study, the chloroplast genome sequence of S. stoloniferum was obtained by next-generation sequencing technology, and compared with that of six other Solanum species to identify S. stoloniferum-specific molecular markers. The length of the complete chloroplast genome of S. stoloniferum was found to be 155,567 bp. The structural organization of the chloroplast genome of S. stoloniferum was similar to that of the six other Solanum species studied. Phylogenetic analysis of S. stoloniferum with nine other Solanaceae family members revealed that S. stoloniferum was most closely related to S. berthaultii. Additional comparison of the complete chloroplast genome sequence of S. stoloniferum with that of five Solanum species revealed the presence of six InDels and 39 SNPs specific to S. stoloniferum. Based on these InDels and SNPs, four PCR-based markers were developed to differentiate S. stoloniferum from other Solanum species. These markers will facilitate the selection of fusion products and accelerate potato breeding using S. stoloniferum.

Development of PCR-based markers specific to Solanum brevicaule by using the complete chloroplast genome sequences of Solanum species (엽록체 전장유전체 비교를 통한 PCR 기반의 Solanum brevicaule 특이적 분자마커 개발)

  • Park, Tae-Ho
    • Journal of Plant Biotechnology
    • /
    • v.49 no.1
    • /
    • pp.30-38
    • /
    • 2022
  • Solanum brevicaule is one of the tuber-bearing wild Solanum species. Because of its resistance to several important pathogens infecting potatoes during cultivation, it can be used for potato breeding. However, the fact that S. brevicaule used in this study has an EBN value of two causes the sexual reproduction barriers between the species and cultivated potatoes. In this study, specific markers for discriminating S. brevicaule from other Solanum species were developed on the basis of the results of sequence alignments with the whole chloroplast genomes of S. brevicaule and seven other Solanum species. The chloroplast genome of S. brevicaule was completed by next-generation sequencing technology described in other recent studies. The total sequence length of the chloroplast genome of S. brevicaule is 155,531 bp. Its structure and gene composition are similar to those of other Solanum species. Phylogenetic analysis revealed that S. brevicaule was closely grouped with other Solanum species. BLASTN search showed that its genome sequence had 99.99% and 99.89% identity with those of S. spegazzinii (MH021562) and S. kurtzianum (MH021495), respectively. Sequence alignment identified 27 SNPs that were specific to S. brevicaule. Thus, three PCR-based CAPS markers specific to S. brevicaule were developed on the basis of these SNPs. This study will facilitate in further studies on evolutionary and breeding aspects in Solanum species.

Species-specific Marker of Phytophthora pinifolia for Plant Quarantine in Korea (국내 식물검역대상 Phytophthora pinifolia의 PCR 검출을 위한 종 특이적 마커 개발)

  • Kim, Narae;Choi, You Ri;Seo, Mun Won;Song, Jeong Young;Kim, Hong Gi
    • The Korean Journal of Mycology
    • /
    • v.44 no.2
    • /
    • pp.103-107
    • /
    • 2016
  • To establish a rapid and accurate detection of Phytophthora pinifolia, which is a quarantine pathogenic fungus in Korea, a species-specific primer was developed based on the ras-related protein (Ypt1) gene. Species-specific primer based on the DNA sequences of Ypt1 gene amplified 193 bp polymerase chain reaction (PCR) product for P. pinifolia. The primer pair yielded the predicted PCR product size exactly in testing with target pathogen DNAs, but not from the other 10 species of Phytophthora and 14 species of other phytopathogenic fungi. The primer pair also showed only the species-specific amplification curve on realtime PCR on target pathogen DNA. The detection sensitivity of real time PCR using species-specific primer pair was 10 to 100 times higher than conventional PCR, with 1 to $10pg/{\mu}L$.

Genetic Variations and Phylogenetic Relationship of and Pueraia lobata Ohwi (Fabaceae) and Related Taxa by RAPD Makers (RAPD분자마커를 이용한 칡(콩과) 및 근연분류군의 유전적 변이 및 유연관계)

  • Kim, Dong-Kap;Jang, Dae-Sik;Kim, Jin-Sook;Kim, Joo-Hwan
    • Korean Journal of Plant Resources
    • /
    • v.22 no.5
    • /
    • pp.446-453
    • /
    • 2009
  • RAPD analyses were performed to investigate genetic relationships and useful molecular maker for 3 species and their 17 regional populations of the Pueraria lobata and related taxa. The length of amplified DNA fragments ranged from 200 to, 2,800 bp. Two hundred and eight scorable polymorphic makers and three scorable monomorphic makers were found from the PCR reactions with 15 random oligo primers, and those were analyzed by Nei's genetic distance coefficient. Based on the UPGMA phenogram from RAPD analyses, two major groups (9 populations from Korea; 3 populations from foreign countries) were recognized. And it showed distinct genetic differences from related taxa. The RAPD results was very useful to define the samples by geographical distribution and to discuss the relationships among the populations and their related taxa of the Pueraria lobata.

Development and Application of PCR-based Markers for the Discrimination of Bang-Poong and Related Species (방풍류의 감별을 위한 분자마커의 탐색과 활용)

  • Hong, Seong-Mi;Lee, Mi-Young;Koh, Jae-Chul;Ko, Byoung-Soeb
    • Journal of Plant Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • Bang-Poong and related species are an important herbal medicine. However, it is difficult to determine the commercial dry material through anatomical and chemotaxonomical characteristics. Here, we used a PCR-based technique for an accurate discrimination of Bang-Poong and related species. With the RAPD primers, 215 RAPDSs(random amplified polymorphic DNAs) were obtained, and 98% of them showed polymorphic patterns. RAPDs from the four primers were appropriate for the discrimination of S. divaricata $(T_{URCZ{\cdot}})\;S_{CHISKIN}$, those from the six primers for P. japonicum $T_{HUNBERG}$, those from the four primers for P. terebinthaceum $F_{ISHER}$, and those from the six primers for G. littoralis Fr. $S_{CHMIDT}$. The specific bands from the primer 425 were obtained and used to develop SCAR (sequence characterized amplified region) markers, based on the sequence information of the RAPD markers. The SCAR primers generated a 215 bp fragment specific to Peucedanum terebinthaceum $F_{ISHER}$, and a 177 bp and a 300 bp fragment specific to G. littoralis Fr. $S_{CHMIDT}$. As a result, the three SCAR markers were able to discriminate from two Bang-Poong related species.

PCR-based markers to select plastid genotypes of Solanum acaule (Solanum acaule 색소체 유전자형 선발을 위한 특이적 분자마커 개발)

  • Park, Tae-Ho
    • Journal of Plant Biotechnology
    • /
    • v.49 no.3
    • /
    • pp.178-186
    • /
    • 2022
  • The tetraploid Solanum acaule is a wild potato species from Bolivia widely used for potato breeding because of its diverse attractive traits, including resistance to frost, late blight, potato virus X, potato virus Y, potato leafroll virus, potato spindle tuber viroid, and cyst nematode. However, the introgression of useful traits into cultivated potatoes via crossing has been limited by differences in endosperm balance number between species. Somatic fusion could be used to overcome sexual reproduction barriers and the development of molecular markers is essential to select proper fusion products. The chloroplast genome of S. acaule was sequenced using next-generation sequencing technology and specific markers for S. acaule were developed by comparing the obtained sequence with those of seven other Solanum species. The total length of the chloroplast genome is 155,570 bp, and 158 genes were annotated. Structure and gene content were very similar to other Solanum species and maximum likelihood phylogenetic analysis with 12 other species belonging to the Solanaceae family revealed that S. acaule is very closely related to other Solanum species. Sequence alignment with the chloroplast genome of seven other Solanum species revealed four InDels and 79 SNPs specific to S. acaule. Based on these InDel and SNP regions, one SCAR marker and one CAPS marker were developed to discriminate S. acaule from other Solanum species. These results will aid in exploring evolutionary aspects of Solanum species and accelerating potato breeding using S. acaule.

Chloroplast genome sequence and PCR-based markers for S. cardiophyllum (감자 근연야생종 Solanum cardiophyllum의 엽록체 전장유전체 구명 및 이를 이용한 S. cardiophyllum 특이적 분자마커의 개발)

  • Tae-Ho Park
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.45-55
    • /
    • 2023
  • The diploid Solanum cardiophyllum, a wild tuberbearing species from Mexico is one of the relatives to potato, S. tuberosum. It has been identified as a source of resistance to crucial pathogens and insects such as Phytophthora infestans, Potato virus Y, Colorado potato beetle, etc. and is widely used for potato breeding. However, the sexual hybridization between S. cardiophyllum and S. tuberosum is limited due to their incompatibility. Therefore, somatic hybridization can introduce beneficial traits from this wild species into the potato. After somatic hybridization, selecting fusion products using molecular markers is essential. In the current study, the chloroplast genome of S. cardiophyllum was sequenced by next-generation sequencing technology and compared with those of other Solanum species to develop S. cardiophyllum-specific markers. The total length of the S. cardiophyllum chloroplast genome was 155,570 bp and its size, gene content, order and orientation were similar to those of the other Solanum species. Phylogenic analysis with 32 other Solanaceae species revealed that S. cardiophyllum was expectedly grouped with other Solanum species and most closely located with S. bulbocastanum. Through detailed comparisons of the chloroplast genome sequences of eight Solanum species, we identified 13 SNPs specific to S. cardiophyllum. Further, four SNP-specific PCR markers were developed for discriminating S. cardiophyllum from other Solanum species. The results obtained in this study would help to explore the evolutionary aspects of Solanum species and accelerate breeding using S. cardiophyllum.