DOI QR코드

DOI QR Code

Development and Application of PCR-based Markers for the Discrimination of Bang-Poong and Related Species

방풍류의 감별을 위한 분자마커의 탐색과 활용

  • Hong, Seong-Mi (Department of Inspection Enterprise, Korea Institute of Oriental Medicine) ;
  • Lee, Mi-Young (Department of Inspection Enterprise, Korea Institute of Oriental Medicine) ;
  • Koh, Jae-Chul (Department of Life Resources, Catholic University of Daegu) ;
  • Ko, Byoung-Soeb (Department of Inspection Enterprise, Korea Institute of Oriental Medicine)
  • 홍성미 (한국한의학연구원 검사사업부) ;
  • 이미영 (한국한의학연구원 검사사업부) ;
  • 고재철 (대구가톨릭대학교 생명자원학과) ;
  • 고병섭 (한국한의학연구원 검사사업부)
  • Published : 2004.03.01

Abstract

Bang-Poong and related species are an important herbal medicine. However, it is difficult to determine the commercial dry material through anatomical and chemotaxonomical characteristics. Here, we used a PCR-based technique for an accurate discrimination of Bang-Poong and related species. With the RAPD primers, 215 RAPDSs(random amplified polymorphic DNAs) were obtained, and 98% of them showed polymorphic patterns. RAPDs from the four primers were appropriate for the discrimination of S. divaricata $(T_{URCZ{\cdot}})\;S_{CHISKIN}$, those from the six primers for P. japonicum $T_{HUNBERG}$, those from the four primers for P. terebinthaceum $F_{ISHER}$, and those from the six primers for G. littoralis Fr. $S_{CHMIDT}$. The specific bands from the primer 425 were obtained and used to develop SCAR (sequence characterized amplified region) markers, based on the sequence information of the RAPD markers. The SCAR primers generated a 215 bp fragment specific to Peucedanum terebinthaceum $F_{ISHER}$, and a 177 bp and a 300 bp fragment specific to G. littoralis Fr. $S_{CHMIDT}$. As a result, the three SCAR markers were able to discriminate from two Bang-Poong related species.

한약재로 사용되는 방풍류는 절단되어 유통되므로 외부 형태적인 특징만으로 구분하기가 어려워 방풍류로 사용되는 방풍, 식방풍, 석방풍, 갯방풍 등 4종에 대해 PCR에 기초한 RAPD 마커를 이용하여 SCAR 마커를 개발하고자 하였다. RAPD 분석결과 밴드의 패턴은 다양하게 나타났으며 다형성의 밴드 수는 총 215개로 전체 밴드수의 98%였다. RAPD 분석에서 각 방풍류를 구별 할 수 있는 특이적인 밴드를 나타내는 primer는 방풍에서 4개의 primer, 식방풍은 6개의 primer, 석방풍은 4개의 primer, 갯방풍은 6개의 primer를 선발하였고, 그 중 특히 primer 425는 4종의 방풍류의 감별에 유용하였고, 이를 이용하여 SCAR마커로 전환하는데 이용하였다. 특이적인 단편을 클로닝하여 염기서열 분석으로 특이 primer를 제작하고 제작된 primer로 방풍류 시료 16개에 적용하였을 때, 국내의 야생에서 주로 자생하는 석방풍은 215 bp, 그리고 국내에서 가장 많이 재배 또는 생산되는 갯방풍은 177 bp와 300 bp에서 뚜렷하게 나타났다. 따라서 갯방풍과 석방풍의 감별 가능성을 제시할 수 있으며 개발된 SCAR 마커를 이용하여 시중에 유통되고 있는 방풍류 건조약재의 감별에 유용한 마커로 활용될 수 있을 것이다.

Keywords

References

  1. Ardiel GS, Grewal TS, Deberdt P, Rossnagel BG, Scoles GJ (2002) Inheritance of resistance to covered smut in barely and development of a tightly linked SCAR marker. Theor Appl Genet 104:457-464 https://doi.org/10.1007/s001220100696
  2. Arnedo AM, Gil-Ortega R, Luis AM, Hormaza J (2002) Development of RAPD and SCAR markers linked to the Pvr4 locus for resistance to PVY in pepper (Capsicum annum L.). Theor Appl Genet 105: 1067-1074 https://doi.org/10.1007/s00122-002-1058-2
  3. Bulat SA, L$\ddot u$beck M, Alekhina IA, Jensen DF, Knudser IM, L$\ddot u$beck PS (2000) Identification of a universally primed-PCR-derived sequence-characterized amplified region marker for an antagonistic strain of Clonostachys rosea and development of a strain-specific PCR detection assay. Appl Environ Microbiol 66: 4758-4763 https://doi.org/10.1128/AEM.66.11.4758-4763.2000
  4. Choi HY, Lee Sl, Suh YB (1997) PCR-mediated RFLP to identify 'Bangpoong', a crude drug. Kor J Pharmacogn 28:1-8
  5. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantaties of fresh leaf tissue. Phytochem Bull 19: 11-15
  6. Hemandez P, Dorado Q, Ramirez MC, Laurie DA, Snape JW, Martin A (2003) Development of cost-effective Hordeum chilense DNA markers: molecular aids for marker-assisted cereal breeding. Hereditas 138: 54-8 https://doi.org/10.1034/j.1601-5223.2003.01617.x
  7. Korea Food and Drug Administration (2002a) The Korean pharmnacoepia 8th edition. pp 1309; pp 1560
  8. Korea Food and Drug Administration (2002b) The Korean herbal pharmacoepia. pp 247
  9. Lee WC (1996) Coloured standard illustrations of Korean plants. Academy Co Ltd. pp 257-260
  10. Ministry of Health and Welfare, Japan (1996) The Japanese pharmacopeia 13th ed. D-980
  11. Naqvi N, Chattoo BB (1996) Development of a sequence characterized amplified region (SCAR) based indirect selection method for a dominant blast-resistance gene in rice. Genome 39: 26-30 https://doi.org/10.1139/g96-004
  12. Megi MS, Devic M, Delseny M, Lakshmikumaran M (2000) Identification of AFLP fragments linked to seed coat colour in Brassica Juncea and conversion to a SCAR marker for rapid selection. TheorAppl Genet 101: 146-152 https://doi.org/10.1007/s001220051463
  13. Okuyama E, Hasegawa T, Matsushita T, Fujimoto H, Ishibashi M, Yamazaki M (2001) Analgesic components of saposhnikovia root (Saposhnikouia diuaricata). Chem Phann Bull 49:154-60 https://doi.org/10.1248/cpb.49.154
  14. Paran I, Michelmore RW (1993) Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 85:985-993
  15. Pharmacopoeia Commission of the Ministry of Public Health, P. R. China (1995 edition) A coloured atlas of the Chinese materia medica specified in pharmacopoeia of the People's Republic of China. Guangdong Science and Technology Press. pp 190-123
  16. Randig O, Bongiovanni M, Cameiro RM, Castagnone-Sereno P (2002) Genetic diversity of root-knot nematodes from Brazil and development of SCAR markers specific for the coffee-damaging species. Genome 45: 862-870 https://doi.org/10.1139/g02-054
  17. Ryu DS, Yook CS (1972) Coumarin components in the root of Peucedanum terebinthaceum. Kor J Pharmacogn 3: 215-216
  18. Wang J, Ha WY, Ngan FN, But PP, Shaw PC (2001) Application of sequence characterized amplified region (SCAR) analysis to authenticate Panax species and their adulterants. Planta Med 67: 781-783 https://doi.org/10.1055/s-2001-18340
  19. Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphism ampliRed by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531 -6535 https://doi.org/10.1093/nar/18.22.6531
  20. Yuan Z, Tezuka Y, Fan W, Kadota S, Li X (2002) Constituents of the underground parts of Glehnia IittoraIis. Chem Pharm Bull 50: 73- 77 https://doi.org/10.1248/cpb.50.73

Cited by

  1. The complete chloroplast genome sequence of the medicinal plantGlehnia littoralisF.Schmidt ex Miq. (Apiaceae) vol.27, pp.5, 2016, https://doi.org/10.3109/19401736.2015.1079850
  2. The complete chloroplast genome sequence ofLedebouriella seseloides(Hoffm.) H. Wolff vol.27, pp.5, 2016, https://doi.org/10.3109/19401736.2015.1066366