• 제목/요약/키워드: 트윗 분석

검색결과 128건 처리시간 0.031초

학술문헌을 인용하는 트윗의 기능 분석 연구 (Function Classification of tweets Citing Scholarly Articles)

  • 김병규;강지훈
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2018년도 제58차 하계학술대회논문집 26권2호
    • /
    • pp.83-84
    • /
    • 2018
  • 개별논문 평가를 위해 제안된 altmetric가 주목받고 있다. altmetrics에서는 개별 논문의 트윗의 건수를 평가요소 중 하나로 활용한다. 그러나 여러가지 목적으로 작성된 트윗을 단일하게 처리하는 것은 문제가 있다. 본 논문은 과학 논문에 달린 트윗들을 분석하여 기능의 범주를 정의하고 분류체계를 제시하였으며, 기존의 논문의 인용기능 분류 실험을 실시하여 그 결과와 비교 분석을 수행하였다. 향후 도출한 트윗 기능 분류에 대한 개선과 추가적인 연구를 수행할 계획이다.

  • PDF

소셜 사건에 대한 사용자의 행동 분석에 기반한 신뢰성 높은 사용자의 트윗 추출 (Extracting Reliable User's Tweet for Social Events Based on User Behavior in Twitter)

  • 촐몽 바야르;이경순
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 추계학술발표대회
    • /
    • pp.608-611
    • /
    • 2012
  • 소셜 사건이 일어나면 그 사건과 관련된 트윗이 폭발적으로 증가하는데 트윗 일부 내용을 살펴보면 스팸, 광고와 같은 트윗이 많이 포함되어 있다. 수 많은 트위터 데이터에서 사용자가 사건과 직접 관련된 신뢰성 높은 트윗을 찾아 읽는데 시간이 많이 걸릴 수 있다. 이러한 문제를 해결하기 위해 본 논문에서 트위터의 리트윗 정보, 사용자 신뢰도 측정 및 활동 분석, 팔로잉과 팔로워간의 정보 등 사용자의 행동 분석을 이용하여 소셜 사건과 직접 관련된 신뢰성 높은 사용자의 트윗을 추출하는 방법을 제안한다. 제안 방법의 유효성을 검증하기 위해 소셜 이슈 4 개에 대한 트윗 데이터에서의 실험을 통하여 상위 100 개의 결과에서의 정확률(P@100) 76.6%의 성능을 보였다. 실험을 통해 제안 방법이 신뢰성 높은 사용자의 트윗을 추출하는데 효과적인 방법임을 알 수 있다.

소셜 데이터에서 재난 사건 추출을 위한 사용자 행동 및 시간 분석을 반영한 토픽 모델

  • 촐몽 바야르;이경순
    • 정보와 통신
    • /
    • 제34권6호
    • /
    • pp.43-50
    • /
    • 2017
  • 본고에서는 소셜 빅데이터에서 공공안전에 위협되고 사회적으로 이슈가 되는 재난사건을 추출하기 위한 방법으로 소셜 네트워크상에서 사용자 행동 분석과 시간분석을 반영한 토픽 모델링 기법을 알아본다. 소셜 사용자의 글 수, 리트윗 반응, 활동주기, 팔로워 수, 팔로잉 수 등 사용자의 행동 분석을 통하여 활동적이고 신뢰성 있는 사용자를 분류함으로써 트윗에서 스팸성과 광고성을 제외하고 이슈에 대해 신뢰성 높은 사용자가 쓴 트윗을 중요하게 반영한다. 또한, 트위터 데이터에서 새로운 이슈가 발생한 것을 탐지하기 위해 시간별 핵심어휘 빈도의 분포 변화를 측정하고, 이슈 트윗에 대해 감성 표현 분석을 통해 핵심이슈에 대해 사건 어휘를 추출한다. 소셜 빅데이터의 특성상 같은 날짜에 여러 이슈에 대한 트윗이 많이 생성될 수 있기 때문에, 트윗들을 토픽별로 그룹핑하는 것이 필요하므로, 최근 많이 사용되고 있는 LDA 토픽모델링 기법에 시간 특성과 사용자 특성을 분석한 시간상에서의 중요한 사건 어휘를 반영하고, 해당이슈에 대한 신뢰성 있는 사용자가 쓴 트윗을 중요시 반영하도록 토픽모델링 기법을 개선한 소셜 사건 탐지 방법에 대해 알아본다.

소셜 빅데이터 모니터링을 통한 재난정보 위치공개 트윗 현황 분석 (A Status Analysis of Location Disclosure Tweet of Disaster Information using Social Bigdata Monitoring)

  • 이보람;배병걸;최선화
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 추계학술발표대회
    • /
    • pp.900-901
    • /
    • 2014
  • 최근 정보처리기술의 비약적인 발전은 소셜미디어를 통해 생산되는 종합정보의 처리를 용이하게 하였으며 광역적 의사소통을 가능하게 하였다. 이와 같은 기술의 발전을 재난관리에 적극 활용하려는 움직임이 확산되고 있으며, 이는 국내외의 여러 사례들을 통해 그 필요성이 입증되고 있다. 본 연구에서는 국립재난안전연구원에서 개발한 실시간 소셜 빅데이터 모니터링 시스템인 '소셜빅보드(Social Big Board)'를 활용하여 대상 기간 동안의 지역별 위치공개 트윗 현황을 조사하였다. 이를 위해 전체 재난 안전관련 트윗 중 위치정보공개 트윗을 대상으로 분석을 수행 하였으며 그 결과, 분석기간에 따른 전체 트윗과 지역별 위치정보공개 트윗은 재난상황의 발생과 피해규모에 따라 발생의 정도가 다르게 나타나는 것을 확인하였다. 향후, 재난 안전과 관련된 위치정보공개 트윗의 지속적인 모니터링 수행을 통해 신뢰성 있는 재난 대응체계 구축이 가능할 것으로 기대된다.

토픽 모델링을 이용한 트위터 데이터의 공간 분포 패턴 분석 (Spatial Distribution Patterns of Twitter Data with Topic Modeling)

  • 우현지;김영훈
    • 한국지역지리학회지
    • /
    • 제23권2호
    • /
    • pp.376-387
    • /
    • 2017
  • 본 연구는 트위터를 대상으로 트윗 공간 데이터에서 지리적 의미를 탐색하기 위한 방법을 모색하였다. 트윗 공간 데이터의 구축 과정 및 지리적 분석의 프레임워크를 정립하고 지리적 연구 방법론을 제안하였다. 이를 위해 본 연구는 제주도의 GPS 좌표 참조 트윗(geotweet)을 대상으로 트윗의 내용적 특성과 트윗 발생 위치의 공간 분포 특성을 확인하였다. 제주도 좌표 참조 트윗에서는 지명 또는 장소명이 많이 출현하였는데, 이는 자신의 위치를 알리고자하는 의도로 파악하였다. 트윗의 공간 분포는 제주공항을 중심으로 한 일부 관광지 주변으로 핫스팟이 확인되었고, 이는 제주도 유동인구 핫스팟과 유사한 패턴을 보였다. 주제 중심의 트윗 분석을 위해 본 연구에서는 토픽 모델링 알고리즘을 이용하여 분석하였다. 분석 결과, 주제의 지리적 위치와 트윗의 내용은 서로 관련이 있음을 알 수 있었다. 마지막으로 본 연구는 토픽 모델링 분석을 통해 방대한 트윗 데이터의 내용에 상응하는 지역 분포 특성을 직관적으로 확인하는데 유용하게 활용될 수 있다는 것을 확인하였다.

  • PDF

2014년~2015년 국가기록원 관련 트윗 이슈분석 (A study on the issue analysis of National Archives of Korea based on SNS(tweet) analysis between 2014~2015)

  • 서지원;박준형;오효정;윤은하
    • 기록학연구
    • /
    • 제50호
    • /
    • pp.139-175
    • /
    • 2016
  • 본 연구는 2014년과 2015년 국가기록원과 관련된 트윗을 수집, 내용분석에 기반한 이슈 파악에 대한 연구이다. 이를 위하여 2014년과 2015년에 생산된 트윗 중 '국가기록원'이라는 키워드가 언급된 모든 트윗을 수집하고, 내용을 분석, 세부 유형과 이슈들에 대해 분석하였다. 분석결과는 다음과 같다. 첫째, 국가기록원 소장 기록물 공개 및 소개에 대한 트윗들은 2년에 걸쳐 그 양은 증가하였지만 비슷한 생산 유형을 보이고 있었다. 둘째, 정치 사회적 트윗의 특징은 정치 사회적 이슈에 관한 국가기록원의 역할에 대한 내용으로 일반 트윗 이용자들에 의해 작성되었다.

트위터의 감정 분석을 통한 실시간 장소 추천 시스템 (Real-time Spatial Recommendation System based on Sentiment Analysis of Twitter)

  • 오평화;황병연
    • 한국전자거래학회지
    • /
    • 제21권3호
    • /
    • pp.15-28
    • /
    • 2016
  • 본 논문에서는 모바일에서 획득한 GPS(Global Positioning System)를 활용하여 사용자의 위치 주변에서 발생한 SNS 데이터를 수집하고 분석을 통해 사용자가 원하는 장소를 추천하는 시스템을 제안한다. 이를 위해 트위터에서 위치정보를 포함하는 게시글을 표본 집합으로 정하고 모바일의 위치정보와 함께 활용했을 때, 사용자의 검색의도에 부합하는 양질의 정보를 제공할 수 있음을 실험을 통해 증명하였다. 이를 위해 2015년 11월부터 12월까지 수집한 트윗(Tweet)을 대상으로 임의의 위치정보와 검색어로 구성된 질의를 구성하고 형태소 분석을 거쳐 분석에 적합한 형태의 데이터로 변환하였다. 또한 장소 추천을 위해 감정사전을 구축하여 긍정 및 부정을 의미하는 극성 키워드들을 정의하고 레이블을 구성한 후, 감정사전과 극성키워드를 이용해 개별 트윗의 추천 점수를 도출하였다. 논문은 추천 점수와 사용자의 현재 위치, 트윗이 작성된 위치와 사용자 위치 사이의 거리 계산을 통해 가까운 거리 순으로 10개의 장소 정보를 정렬하여 결과를 보인다. 또한 성능평가를 위해 감정 분석된 트윗에 대한 정밀도와 재현율을 도출하여 시스템의 성능을 확인한다. 실험은 '맛집', '공연' 2개의 키워드와 10개 지역을 기준으로 수행하였다. 실험 결과 키워드 1개당 수집된 트윗은 평균 10.5개였으며, 총 10번의 실험에 사용된 평균 210개의 트윗 중 긍정 또는 부정의 단어를 포함한 트윗의 개수는 평균 122개였다. 또한 감정 분석을 통해 긍정 또는 부정으로 분류된 트윗은 평균 65개였으며 그 중 실제로 긍정 또는 부정의 의미를 담은 트윗은 평균 46개였다. 이를 통해 시스템은 38%의 재현율로 감정요소를 담은 트윗을 탐지하고, 71%의 정밀도로 감정 분석을 수행했음을 확인했다.

한국어 트위터의 감정 분석 도구 (A Sentiment Analysis Tool for Korean Twitter)

  • 서형원;전길호;최명길;남유림;김재훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2011년도 제23회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.94-97
    • /
    • 2011
  • 본 논문은 자동으로 한글 트위터 메시지(트윗: tweet)에 포함된 감정을 분석하는 방법에 대하여 기술한다. 제안된 시스템에 의하여 수집된 트윗들은 어떤 질의에 대해 긍정 혹은 부정으로 분류된다. 이것은 일반적으로 어떤 상품을 구매하기 원하는 고객이나, 상품에 대한 고객들의 평가를 수집하기 원하는 기업에게 유용하다. 영문 트윗에 대한 연구는 이미 활발하게 진행되고 있지만 한글 트윗, 특히 감정 분류에 대한 연구는 아직 공개된 것이 없다. 수집된 트윗들은 기계 학습(Naive Bayes, Maximum Entropy, 그리고 SVM)을 이용하여 분류하였고 한글 특성에 따라 자질 선택의 기본 단위를 2음절과 3음절로 나누어 실험하였다. 기존의 영어에 대한 연구는 80% 이상의 정확도를 가지는 반면에, 본 실험에서는 60% 정도의 정확도를 얻을 수 있었다.

  • PDF

유명인과의 트위터 매개 상호작용 특성 탐색 (Characteristics of Interactions between Fan and Celebrities on Twitter)

  • 황유선
    • 한국콘텐츠학회논문지
    • /
    • 제13권8호
    • /
    • pp.72-82
    • /
    • 2013
  • 본 연구에서는 트위터 상에서의 유명인과 트위터 이용자 사이에 이루어지는 트위터 매개 상호작용의 특성 및 감정 반응에 대해 탐색하였다. 이를 위해 유명인과의 트위터 매개 상호작용 유형을 '의사 교호작용', '정보 허브', 그리고 '팬덤' 등의 세 가지로 구분하였고, 유명인의 유형은 '연예인', '정치인', '전문인', 그리고 '블로거' 등의 네 가지로 분류하였다. 이렇게 구분된 트위터 매개 상호작용 및 유명인의 유형 범주에 따라 트위터 이용자들이 수행하는 트윗 행위의 특성을 분석 비교하였다. 또한 트위터 이용자들의 감정 반응을 나타내는 지표로 상정한 '이모티콘 이용'과 '감정 표현 제시' 빈도가 트위터 매개의 상호작용 유형 및 유명인 유형 범주에 따라 어떠한 차이가 있는지도 확인하였다. 분석을 위한 자료는 한국 트위터 공식 사이트를 통해 수집되었다. 공식 사이트를 활용하여 각 유형별 유명인에 대해 이루어진 트윗을 검색해 총 960개의 트윗을 수집하였고 각각의 트윗에 대한 내용 분석을 실시하였다. 분석 결과, 트위터 이용자들의 의사 교호작용 트윗 형태는 정치인과 전문가 유형에 대해서 가장 빈번했고, 팬덤 성격의 트윗은 연예인 유형에 대해서 가장 현저했으며, 정보 허브를 표방하는 트윗은 블로거 유형에 대해서 제일 빈번하게 수행된 것을 알 수 있었다. 감정 반응과 관련해서는 팬덤 유형의 트위터 매개 상호작용에 있어서 이모티콘 이용과 감정 표현의 제시 빈도가 가장 현저했다. 또 유명인 유형 중에서는 연예인에 대한 트윗에서 감정 반응이 가장 현저하게 드러났으며 이모티콘 이용 빈도는 전문인의 경우가 그 뒤를 이었고, 감정 표현 사용은 전문인과 정치인 유형이 유사한 것으로 확인되었다.

유사 트윗 분석에 기반한 트위터 해시태그 추천기법 (Twitter HashTag Recommendation Scheme based on Similar Tweet Analysis)

  • 전민아;전상훈;황인준
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 추계학술발표대회
    • /
    • pp.962-963
    • /
    • 2013
  • 트위터 해시태그(#, HashTag)는 트윗(Tweets)에서 특정 키워드나 내용을 주제별로 분류하고 검색을 보다 효율적으로 사용하기 위한 사용자 정의 태그이다. 사용자가 정의하기에 따라 다양한 형태로 작성되기 때문에 오히려 검색의 효율성이 떨어질 수 있으며, 사용자는 자신이 작성한 트윗에 어떤 해시태그를 추가해야 하는지에 대한 궁금증이 생기는 경우가 발생한다. 본 논문에서는 이러한 문제를 해결하기 위해 사용자가 작성한 트윗에 적합한 해시태그를 추천하는 기법을 제안한다. 수집한 트윗과 해시태그의 키워드를 추출하고 트윗의 유사도를 계산하기 위해 TF-IDF와 Cosine Similarity를 적용하여 유사한 트윗을 갖는 해시태그를 추천한다. 본 논문에서 제안된 기법을 검증하기 위한 실험으로 추천의 정확성을 평가했다.