개별논문 평가를 위해 제안된 altmetric가 주목받고 있다. altmetrics에서는 개별 논문의 트윗의 건수를 평가요소 중 하나로 활용한다. 그러나 여러가지 목적으로 작성된 트윗을 단일하게 처리하는 것은 문제가 있다. 본 논문은 과학 논문에 달린 트윗들을 분석하여 기능의 범주를 정의하고 분류체계를 제시하였으며, 기존의 논문의 인용기능 분류 실험을 실시하여 그 결과와 비교 분석을 수행하였다. 향후 도출한 트윗 기능 분류에 대한 개선과 추가적인 연구를 수행할 계획이다.
소셜 사건이 일어나면 그 사건과 관련된 트윗이 폭발적으로 증가하는데 트윗 일부 내용을 살펴보면 스팸, 광고와 같은 트윗이 많이 포함되어 있다. 수 많은 트위터 데이터에서 사용자가 사건과 직접 관련된 신뢰성 높은 트윗을 찾아 읽는데 시간이 많이 걸릴 수 있다. 이러한 문제를 해결하기 위해 본 논문에서 트위터의 리트윗 정보, 사용자 신뢰도 측정 및 활동 분석, 팔로잉과 팔로워간의 정보 등 사용자의 행동 분석을 이용하여 소셜 사건과 직접 관련된 신뢰성 높은 사용자의 트윗을 추출하는 방법을 제안한다. 제안 방법의 유효성을 검증하기 위해 소셜 이슈 4 개에 대한 트윗 데이터에서의 실험을 통하여 상위 100 개의 결과에서의 정확률(P@100) 76.6%의 성능을 보였다. 실험을 통해 제안 방법이 신뢰성 높은 사용자의 트윗을 추출하는데 효과적인 방법임을 알 수 있다.
본고에서는 소셜 빅데이터에서 공공안전에 위협되고 사회적으로 이슈가 되는 재난사건을 추출하기 위한 방법으로 소셜 네트워크상에서 사용자 행동 분석과 시간분석을 반영한 토픽 모델링 기법을 알아본다. 소셜 사용자의 글 수, 리트윗 반응, 활동주기, 팔로워 수, 팔로잉 수 등 사용자의 행동 분석을 통하여 활동적이고 신뢰성 있는 사용자를 분류함으로써 트윗에서 스팸성과 광고성을 제외하고 이슈에 대해 신뢰성 높은 사용자가 쓴 트윗을 중요하게 반영한다. 또한, 트위터 데이터에서 새로운 이슈가 발생한 것을 탐지하기 위해 시간별 핵심어휘 빈도의 분포 변화를 측정하고, 이슈 트윗에 대해 감성 표현 분석을 통해 핵심이슈에 대해 사건 어휘를 추출한다. 소셜 빅데이터의 특성상 같은 날짜에 여러 이슈에 대한 트윗이 많이 생성될 수 있기 때문에, 트윗들을 토픽별로 그룹핑하는 것이 필요하므로, 최근 많이 사용되고 있는 LDA 토픽모델링 기법에 시간 특성과 사용자 특성을 분석한 시간상에서의 중요한 사건 어휘를 반영하고, 해당이슈에 대한 신뢰성 있는 사용자가 쓴 트윗을 중요시 반영하도록 토픽모델링 기법을 개선한 소셜 사건 탐지 방법에 대해 알아본다.
최근 정보처리기술의 비약적인 발전은 소셜미디어를 통해 생산되는 종합정보의 처리를 용이하게 하였으며 광역적 의사소통을 가능하게 하였다. 이와 같은 기술의 발전을 재난관리에 적극 활용하려는 움직임이 확산되고 있으며, 이는 국내외의 여러 사례들을 통해 그 필요성이 입증되고 있다. 본 연구에서는 국립재난안전연구원에서 개발한 실시간 소셜 빅데이터 모니터링 시스템인 '소셜빅보드(Social Big Board)'를 활용하여 대상 기간 동안의 지역별 위치공개 트윗 현황을 조사하였다. 이를 위해 전체 재난 안전관련 트윗 중 위치정보공개 트윗을 대상으로 분석을 수행 하였으며 그 결과, 분석기간에 따른 전체 트윗과 지역별 위치정보공개 트윗은 재난상황의 발생과 피해규모에 따라 발생의 정도가 다르게 나타나는 것을 확인하였다. 향후, 재난 안전과 관련된 위치정보공개 트윗의 지속적인 모니터링 수행을 통해 신뢰성 있는 재난 대응체계 구축이 가능할 것으로 기대된다.
본 연구는 트위터를 대상으로 트윗 공간 데이터에서 지리적 의미를 탐색하기 위한 방법을 모색하였다. 트윗 공간 데이터의 구축 과정 및 지리적 분석의 프레임워크를 정립하고 지리적 연구 방법론을 제안하였다. 이를 위해 본 연구는 제주도의 GPS 좌표 참조 트윗(geotweet)을 대상으로 트윗의 내용적 특성과 트윗 발생 위치의 공간 분포 특성을 확인하였다. 제주도 좌표 참조 트윗에서는 지명 또는 장소명이 많이 출현하였는데, 이는 자신의 위치를 알리고자하는 의도로 파악하였다. 트윗의 공간 분포는 제주공항을 중심으로 한 일부 관광지 주변으로 핫스팟이 확인되었고, 이는 제주도 유동인구 핫스팟과 유사한 패턴을 보였다. 주제 중심의 트윗 분석을 위해 본 연구에서는 토픽 모델링 알고리즘을 이용하여 분석하였다. 분석 결과, 주제의 지리적 위치와 트윗의 내용은 서로 관련이 있음을 알 수 있었다. 마지막으로 본 연구는 토픽 모델링 분석을 통해 방대한 트윗 데이터의 내용에 상응하는 지역 분포 특성을 직관적으로 확인하는데 유용하게 활용될 수 있다는 것을 확인하였다.
본 연구는 2014년과 2015년 국가기록원과 관련된 트윗을 수집, 내용분석에 기반한 이슈 파악에 대한 연구이다. 이를 위하여 2014년과 2015년에 생산된 트윗 중 '국가기록원'이라는 키워드가 언급된 모든 트윗을 수집하고, 내용을 분석, 세부 유형과 이슈들에 대해 분석하였다. 분석결과는 다음과 같다. 첫째, 국가기록원 소장 기록물 공개 및 소개에 대한 트윗들은 2년에 걸쳐 그 양은 증가하였지만 비슷한 생산 유형을 보이고 있었다. 둘째, 정치 사회적 트윗의 특징은 정치 사회적 이슈에 관한 국가기록원의 역할에 대한 내용으로 일반 트윗 이용자들에 의해 작성되었다.
본 논문에서는 모바일에서 획득한 GPS(Global Positioning System)를 활용하여 사용자의 위치 주변에서 발생한 SNS 데이터를 수집하고 분석을 통해 사용자가 원하는 장소를 추천하는 시스템을 제안한다. 이를 위해 트위터에서 위치정보를 포함하는 게시글을 표본 집합으로 정하고 모바일의 위치정보와 함께 활용했을 때, 사용자의 검색의도에 부합하는 양질의 정보를 제공할 수 있음을 실험을 통해 증명하였다. 이를 위해 2015년 11월부터 12월까지 수집한 트윗(Tweet)을 대상으로 임의의 위치정보와 검색어로 구성된 질의를 구성하고 형태소 분석을 거쳐 분석에 적합한 형태의 데이터로 변환하였다. 또한 장소 추천을 위해 감정사전을 구축하여 긍정 및 부정을 의미하는 극성 키워드들을 정의하고 레이블을 구성한 후, 감정사전과 극성키워드를 이용해 개별 트윗의 추천 점수를 도출하였다. 논문은 추천 점수와 사용자의 현재 위치, 트윗이 작성된 위치와 사용자 위치 사이의 거리 계산을 통해 가까운 거리 순으로 10개의 장소 정보를 정렬하여 결과를 보인다. 또한 성능평가를 위해 감정 분석된 트윗에 대한 정밀도와 재현율을 도출하여 시스템의 성능을 확인한다. 실험은 '맛집', '공연' 2개의 키워드와 10개 지역을 기준으로 수행하였다. 실험 결과 키워드 1개당 수집된 트윗은 평균 10.5개였으며, 총 10번의 실험에 사용된 평균 210개의 트윗 중 긍정 또는 부정의 단어를 포함한 트윗의 개수는 평균 122개였다. 또한 감정 분석을 통해 긍정 또는 부정으로 분류된 트윗은 평균 65개였으며 그 중 실제로 긍정 또는 부정의 의미를 담은 트윗은 평균 46개였다. 이를 통해 시스템은 38%의 재현율로 감정요소를 담은 트윗을 탐지하고, 71%의 정밀도로 감정 분석을 수행했음을 확인했다.
본 논문은 자동으로 한글 트위터 메시지(트윗: tweet)에 포함된 감정을 분석하는 방법에 대하여 기술한다. 제안된 시스템에 의하여 수집된 트윗들은 어떤 질의에 대해 긍정 혹은 부정으로 분류된다. 이것은 일반적으로 어떤 상품을 구매하기 원하는 고객이나, 상품에 대한 고객들의 평가를 수집하기 원하는 기업에게 유용하다. 영문 트윗에 대한 연구는 이미 활발하게 진행되고 있지만 한글 트윗, 특히 감정 분류에 대한 연구는 아직 공개된 것이 없다. 수집된 트윗들은 기계 학습(Naive Bayes, Maximum Entropy, 그리고 SVM)을 이용하여 분류하였고 한글 특성에 따라 자질 선택의 기본 단위를 2음절과 3음절로 나누어 실험하였다. 기존의 영어에 대한 연구는 80% 이상의 정확도를 가지는 반면에, 본 실험에서는 60% 정도의 정확도를 얻을 수 있었다.
본 연구에서는 트위터 상에서의 유명인과 트위터 이용자 사이에 이루어지는 트위터 매개 상호작용의 특성 및 감정 반응에 대해 탐색하였다. 이를 위해 유명인과의 트위터 매개 상호작용 유형을 '의사 교호작용', '정보 허브', 그리고 '팬덤' 등의 세 가지로 구분하였고, 유명인의 유형은 '연예인', '정치인', '전문인', 그리고 '블로거' 등의 네 가지로 분류하였다. 이렇게 구분된 트위터 매개 상호작용 및 유명인의 유형 범주에 따라 트위터 이용자들이 수행하는 트윗 행위의 특성을 분석 비교하였다. 또한 트위터 이용자들의 감정 반응을 나타내는 지표로 상정한 '이모티콘 이용'과 '감정 표현 제시' 빈도가 트위터 매개의 상호작용 유형 및 유명인 유형 범주에 따라 어떠한 차이가 있는지도 확인하였다. 분석을 위한 자료는 한국 트위터 공식 사이트를 통해 수집되었다. 공식 사이트를 활용하여 각 유형별 유명인에 대해 이루어진 트윗을 검색해 총 960개의 트윗을 수집하였고 각각의 트윗에 대한 내용 분석을 실시하였다. 분석 결과, 트위터 이용자들의 의사 교호작용 트윗 형태는 정치인과 전문가 유형에 대해서 가장 빈번했고, 팬덤 성격의 트윗은 연예인 유형에 대해서 가장 현저했으며, 정보 허브를 표방하는 트윗은 블로거 유형에 대해서 제일 빈번하게 수행된 것을 알 수 있었다. 감정 반응과 관련해서는 팬덤 유형의 트위터 매개 상호작용에 있어서 이모티콘 이용과 감정 표현의 제시 빈도가 가장 현저했다. 또 유명인 유형 중에서는 연예인에 대한 트윗에서 감정 반응이 가장 현저하게 드러났으며 이모티콘 이용 빈도는 전문인의 경우가 그 뒤를 이었고, 감정 표현 사용은 전문인과 정치인 유형이 유사한 것으로 확인되었다.
트위터 해시태그(#, HashTag)는 트윗(Tweets)에서 특정 키워드나 내용을 주제별로 분류하고 검색을 보다 효율적으로 사용하기 위한 사용자 정의 태그이다. 사용자가 정의하기에 따라 다양한 형태로 작성되기 때문에 오히려 검색의 효율성이 떨어질 수 있으며, 사용자는 자신이 작성한 트윗에 어떤 해시태그를 추가해야 하는지에 대한 궁금증이 생기는 경우가 발생한다. 본 논문에서는 이러한 문제를 해결하기 위해 사용자가 작성한 트윗에 적합한 해시태그를 추천하는 기법을 제안한다. 수집한 트윗과 해시태그의 키워드를 추출하고 트윗의 유사도를 계산하기 위해 TF-IDF와 Cosine Similarity를 적용하여 유사한 트윗을 갖는 해시태그를 추천한다. 본 논문에서 제안된 기법을 검증하기 위한 실험으로 추천의 정확성을 평가했다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.