• 제목/요약/키워드: 트리 회귀

검색결과 82건 처리시간 0.022초

의사결정트리를 이용한 교육성과 요인에 관한 연구 (A Study on Factors of Education's Outcome using Decision Trees)

  • 김완섭
    • 공학교육연구
    • /
    • 제13권4호
    • /
    • pp.51-59
    • /
    • 2010
  • 대학에서 운영되는 강좌를 효과적으로 관리하고 교육성과를 향상시키기 위해서는 각 클래스의 현재의 교육성과를 진단하고 교육성과에 영향을 미치는 요인들을 파악하는 과정이 요구된다. 요인을 발견하는 연구에는 연관성 분석, 회귀분석 등의 통계기법들이 많이 사용되고 있으며 최근에는 데이터마이닝의 결정트리 분석도 사용되고 있다. 결정트리 분석은 결과 모델을 이해하기 쉽고 의사결정에 적용하기 쉽다는 장점이 있지만, 다중공선성 등의 입력 데이터의 특성에 견고하지 못한 문제점이 있다. 본 연구에서는 기존의 결정트리 분석의 문제점들을 정리하고, 이 문제점들을 보완하기 위한 하나의 실험적 해결책으로 다중 결정트리를 이용한 요인의 발견 방법을 제안한다. 실험을 통해 다중 결정트리를 수행이 다중 결정트리를 적용할 때보다 신뢰할 수 있는 요인을 발견하고 각 변수의 중요성을 발견할 수 있음을 보였다.

  • PDF

기계학습을 이용한 돈사 급수량 예측방안 개발 (Prediction of Water Usage in Pig Farm based on Machine Learning)

  • 이웅섭;류종열;반태원;김성환;최희철
    • 한국정보통신학회논문지
    • /
    • 제21권8호
    • /
    • pp.1560-1566
    • /
    • 2017
  • 최근 사물 인터넷 센서가 설치된 스마트 돈사의 보급을 통해 돈사 관련 빅데이터 축적이 가능해졌고, 다양한 기계 학습방안들이 수집된 데이터에 적용되어 축산농가의 생산성을 향상시키고 있다. 본 연구에서는 다양한 기계학습 방안을 이용하여 돈사관리에서 가장 중요한 요소 중 하나인 급수량을 예측하였다. 구체적으로 실제 돈사에서 수집된 데이터에 회귀 방안인 선형회귀, 회귀트리 및 아다부스트 회귀 방안과 분류 방안인 로지스틱 분류, 결정트리 및 서포트 벡터 머신 (SVM) 분류방안을 적용하여 돈사의 온도와 습도를 기반으로 급수량을 예측하였다. 성능 분석을 통해서 제안한 방안이 높은 정확도로 급수량을 예측하는 것을 확인할 수 있었다. 제안한 방안은 돈사의 급수시설 이상을 조기에 파악하는데 활용되어 가축을 폐사를 막고 돈사 생산성을 높이는데 활용될 수 있다.

모델트리의 결측치 처리 방법에 따른 콜레스테롤수치 예측의 성능 변화 (Using Missing Values in the Model Tree to Change Performance for Predict Cholesterol Levels)

  • 정용규;원재강;신성철
    • 서비스연구
    • /
    • 제2권2호
    • /
    • pp.35-43
    • /
    • 2012
  • 데이터 마이닝은 특정분야에서만 관심을 갖는 분야가 아니라 현재 우리주변 여러 분야에서 많이 사용되고 응용되고 있다. 즉, 수많은 데이터 가운데 숨겨져 있는 유용한 상관관계를 발견하여, 미래에 실행 가능한 정보를 예측하여 추출해 내고 추후에 의사 결정에 이용하는 과정을 말한다. 하지만, 일부 데이터 집합에서는 매우 많은 결측치를 포함하는 변수들이 존재한다. 다시 말해서 다수의 레코드에서 측정치가 존재하지 않는 데이터 집합이 존재한다. 그래서 본 논문에서는 Cholesterol 값을 예측하기 위한 결측치 처리에 따른 모델트리 알고리즘을 적용하고, 실험을 통해서 각 처리방식에 대한 성능을 분석한다. 또는 이 결과를 통하여 결측치 대체방법에 대한 효율적인 적용사례를 제시한다.

  • PDF

음향방출 계측법을 이용한 프랙탈 특성과 트리잉 파괴진단에 관한 연구 (A Study on the Diagnosis of Treeing Breakdown and Fractal Characteristics Using the Method of Acoustic Enission)

  • 김성홍;심종탁;김재환
    • 한국조명전기설비학회지:조명전기설비
    • /
    • 제11권6호
    • /
    • pp.50-56
    • /
    • 1997
  • 전극들과 절연재료 사이의 결합과 고분자 절연체 내부에서 여러 가지 결함에 의한 부분 방전이 발생함으로 일어날 수 있는 절연 재료의 트리 열화를 파괴 예지할 목적으로 하였다. 부분 방전에 기인한 트리잉은 절연 재료의 파괴를 일으킬 수 있는 중요한 원인 가운데 하나다. 최근에는 절연 파괴 예지와 절연 재료의 열화 진단을 하는 방법이 중요하게 되었다. 연구 목적은 자동 계측 시스템을 사용하여 인가전압 11[kV], 인공적인 침상보이드(1.5[mm])을 지닌 고분자 절연체 내부에서 음향 방출시스템과 프랙탈 차원을 사용하여 트리 현상을 관찰하였다. 따라서 본 논문에는 최소자승법에 의한 회귀분석을 사용하여 위상각-음향방출 펄스크기-열화시간 양상과 위상각-음향방출 펄스수-열화시간과 프랙탈 차원의 관계를 통하여 파괴가 발생하기 전의 파괴 예지법으로 사용하였다.

  • PDF

머신러닝을 활용한 브랜드별 국내 중고차 가격 예측 모델에 관한 연구 (A Study on the Prediction Models of Used Car Prices for Domestic Brands Using Machine Learning)

  • 임승준;이정호;류춘호
    • 서비스연구
    • /
    • 제13권3호
    • /
    • pp.105-126
    • /
    • 2023
  • 국내 중고차 시장은 지속적으로 성장하고 있으며, 이와 동시에 중고차 온라인 플랫폼 서비스 역시 함께 매년 시장 점유율을 확대하고 있다. 중고차 온라인 플랫폼 서비스는 차량의 제원, 점검 이력, 사고 내역, 그리고 세부 옵션 등을 서비스 이용자에게 제공하고 있다. 대부분의 기존 연구는 차량의 제원과 차량의 일부 옵션을 활용한 중고차 가격의 예측이었으며, 중고차 가격과 일부 제원 변수 간 비선형 관계임을 확인하였다. 이에 따라 연구자들은 이러한 비선형 문제를 해결하기 위해 머신러닝(Machine Learning) 모델의 실행을 제안하였으며, 그 결과 회귀(Regression) 기반 머신러닝 모델은 변수의 실질적인 영향력과 방향성을 알 수 있는 장점이 존재하였으나, 트리(Decision Tree) 기반 머신러닝 모델에 비해 비용함수 수치가 저조한 단점이 존재하였다. 본 연구는 국내 브랜드를 대상으로 차량의 제원과 차량의 옵션, 총 70여 개의 변수를 모두 활용하여 회귀 기반 머신러닝 모델과 트리 기반 머신러닝 모델을 순차적으로 실행하여 두 유형의 머신러닝 모델의 장점을 취합하고자 하였다. 이를 통해 브랜드별 변수의 실질적 영향력과 방향성을 확인한 후 브랜드별 가장 우수한 트리 기반 머신러닝 모델을 선정하였다. 본 연구의 시사점은 다음과 같다. 중고차 온라인 플랫폼 서비스를 이용하는 구매자와 판매자가 전반적인 중고차 가격 예측을 지원할 수 있다. 이에 따라 중고차 온라인 플랫폼 서비스 이용자 간 정보의 비대칭으로 인한 문제 해결 역시 지원이 가능할 것으로 기대한다.

Machine Learning Methods to Predict Vehicle Fuel Consumption

  • Ko, Kwangho
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권9호
    • /
    • pp.13-20
    • /
    • 2022
  • 본 연구에서는 주행 차량의 실시간 연료소모량을 예측할 수 있는 머신러닝 기법을 제안하고 그 특성을 분석하였다. 머신러닝 학습을 위해 실도로 주행을 실시하여 주행 속도, 가속도, 도로 구배와 함께 연료소모량을 측정하였다. 특성 데이터로 속도, 가속도, 도로구배를, 타깃으로 연료소모량을 지정하여 다양한 머신러닝 모델을 학습시켰다. 회귀법에 해당하는 K-최근접이웃회귀 및 선형회귀와 함께, 분류법에 해당하는 K-최근접이웃분류, 로지스틱회귀, 결정트리, 랜덤포레스트, 그래디언부스팅을 사용하였다. 실시간 연료소모량에 대한 예측 정확도는 0.5 ~ 0.6 수준으로 전반적으로 낮았고, 회귀법의 경우 분류법보다 정확도가 떨어졌다. 총연료소모량에 대한 예측 오차는 0.2 ~ 2.0% 수준으로 상당히 정확했고, 분류법보다 회귀법의 오차가 더 낮았다. 이는 예측 정확도의 기준으로 결정계수(R2)를 사용했기 때문인데, 이 값이 작을수록 타깃의 평균 부근에 예측치가 좁게 분포하기 때문이다. 따라서 실시간 연료소모량 예측에는 분류법이, 총연료소모량 예측에는 회귀법이 적합하다고 할 수 있다.

음소 결정트리의 노드 분할을 위한 임계치 자동 결정 알고리즘 (The Automated Threshold Decision Algorithm for Node Split of Phonetic Decision Tree)

  • 김범승;김순협
    • 한국음향학회지
    • /
    • 제31권3호
    • /
    • pp.170-178
    • /
    • 2012
  • 본 논문에서는 코레일에서 운영중인 640개 기차역명의 음소기반의 음성인식을 위하여 트라이폰 단위의 음소 결정트리 구축 시 노드 분할 과정에서 사용되는 임계치의 결정에 있어 통계적 기법인 상관관계 분석과 회귀분석을 활용하여 군집화율을 추정하고 이를 이용한 평균 군집화율에 따른 임계치의 값에 의해 자동으로 결정하는 방법을 제안하였다. 제안된 방법의 유효성 검증을 위한 실험에서 기존의 일괄 적용된 Baseline 보다 1.4~2.3 %의 인식률 향상을 보였다.

커터수명지수 예측을 위한 다중선형회귀분석과 트리 기반 머신러닝 기법 적용 (Application of Multiple Linear Regression Analysis and Tree-Based Machine Learning Techniques for Cutter Life Index(CLI) Prediction)

  • 홍주표;고태영
    • 터널과지하공간
    • /
    • 제33권6호
    • /
    • pp.594-609
    • /
    • 2023
  • TBM 공법은 굴착면 안정성 확보 및 주변환경에 비치는 영향을 최소화하기 때문에 도심지나 하·해저터널 등에서 적용 사례가 증가하는 추세이다. 디스크 커터의 수명을 예측하는 대표적인 모델 중 NTNU모델은 커터수명지수(Cutter Life Index, CLI)를 주요 매개 변수로 활용하지만 복잡한 시험절차와 시험장비의 희귀성으로 측정에 어려움이 있다. 본 연구에서는 다중선형회귀분석과 트리 기반의 머신러닝 기법으로 암석물성을 활용하여 CLI를 예측하였다. 문헌 조사를 통해 암석의 일축압축강도, 압열인장강도, 등 가석영함량과 세르샤 마모지수 등을 포함한 데이터베이스를 구축하였고 파생변수를 계산하여 추가하였다. 다중선형회귀분석은 통계적 유의성과 다중공선성을 고려하여 입력 변수를 선정하였고 머신러닝 예측 모델은 변수 중요도를 기반으로 입력 변수를 선정하였다. 학습용과 검증용 데이터를 8:2로 나누어 모델 간 예측 성능을 비교한 결과 XGBoost가 최적의 모델로 선정되었다. 본 연구에서 도출된 다중선형회귀모델과 XGBoost모델을 선행 연구와 예측 성능을 비교하여 타당성을 확인하였다.

다중 회귀 모델을 이용한 전주시 보행 환경 점수 예측에 관한 연구 (A Study on the Walkability Scores in Jeonju City Using Multiple Regression Models)

  • 이기춘;남광우;이창우
    • 한국산업정보학회논문지
    • /
    • 제27권4호
    • /
    • pp.1-10
    • /
    • 2022
  • 컴퓨터 비전을 활용하여 인간의 시각을 해석하려는 시도가 다양한 분야에서 발전되어 왔다. 본 논문에서는 도로영상으로부터 영상의 의미론적 분할 결과를 통해 보행 환경을 평가하는 방법을 제안한다. 먼저 도로영상을 수집하기 위해 카카오 지도 API를 활용하였으며 전주시지역의 약 5만 점에서 4방향 영상을 수집한다. 수집된 영상의 20%는 크라우드 소싱기반 쌍체 비교를 통해 데이터 셋을 구축하고, 쌍체 비교 데이터를 이용하여 다양한 회귀 모델을 훈련한다. 영상 데이터의 보행성 점수를 도출하기 위해 순위 알고리즘인 Trueskill 알고리즘을 활용하여 랭킹 점수를 계산하고, 구축된 데이터를 활용하여 다양한 회귀모델을 사용한 보행성 평가 및 분석 작업을 수행한다. 본 연구를 통해 사람의 시각이 아닌 픽셀 분포 분류 정보 간의 상관관계를 통해 컴퓨터 시스템만으로 전주시의 보행 환경을 평가하고 점수를 도출해 낼 수 있다는 것을 보여준다.

어절 내부 의존관계를 고려한 확률 의존 문법 학습 (Probabilistic Dependency Grammar Induction using Internal Dependency Relation in Words)

  • 최선화;박혁로
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2001년도 추계학술발표논문집 (상)
    • /
    • pp.507-510
    • /
    • 2001
  • 본 논문에서는 코퍼스를 이용한 확률 의존문법 자동 생성 기술을 다룬다. 특히 의존 문법 생성을 위해 확률 재추정 알고리즘을 의존문법생성에 맞도록 변형하여 학습하였으며 정확한 문법 생성 및 회귀데이터(Data Sparseness)문제 해결을 위해서 구성요소의 대표 지배소들 간의 의존관계 만을 학습했던 기존 연구와는 달리 구성요소 내부의 의존관계까지 학습하는 방법을 제안한다. KAIST 의 트리 부착 코퍼스 31,086 문장에서 추출한 25,000 문장의 Tagged Corpus 을 가지고 한국어 확률 의존 문법 학습을 시도 하였다. 그 결과 초기문법을 10.97% 에서 23.73% 까지 줄인 2,349 개의 정확한 문법을 얻을 수 있었다. 문법의 정확성을 실험 하기 위해 350 개의 실험문장을 Parsing 한 결과 69.61%의 파싱 정확도를 보였다. 이로서 구성요소 내부의 의존관계 학습으로 얻어진 의존문법이 더 정확했으며, 회귀데이터 문제 또한 극복할 수 있음을 알 수 있었다.

  • PDF