피라미드 기법 1 은 d-차원의 공간을 2d개의 피라미드들로 분할하는 특별한 공간 분할 방식을 이용하여 고차원 데이타를 효율적으로 색인할 수 있는 새로운 색인 방법으로 제안되었다. 피라미드 기법은 고차원 사각형 형태의 영역 질의에는 효율적이나, 유사성 검색에 많이 사용되는 고차원 구형태의 영역 질의에는 비효율적인 면이 존재한다. 본 논문에서는 고차원 데이타를 많이 사용하는 유사성 검색에 효율적인 새로운 색인 기법으로 구형 피라미드 기법을 제안한다. 구형 피라미드 기법은 먼저 d-차원의 공간을 2d개의 구형 피라미드로 분할하고, 각 단일 구형 피라미드를 다시 구형태의 조각으로 분할하는 특별한 공간 분할 방법에 기반하고 있다. 이러한 공간 분할 방식은 피라미드 기법과 마찬가지로 d-차원 공간을 1-차원 공간으로 변환할 수 있다. 따라서, 변환된 1-차원 데이타를 다루기 위하여 B+-트리를 사용할 수 있다. 본 논문에서는 이렇게 분할된 공간에서 고차원 구형태의 영역 질의를 효율적으로 처리할 수 있는 알고리즘을 제안한다. 마지막으로, 인위적 데이타와 실제 데이타를 사용한 다양한 실험을 통하여 구형 피라미드 기법이 구형태의 영역 질의를 처리하는데 있어서 기존의 피라미드 기법보다 효율적임을 보인다.Abstract The Pyramid-Technique 1 was proposed as a new indexing method for high- dimensional data spaces using a special partitioning strategy that divides d-dimensional space into 2d pyramids. It is efficient for hypercube range query, but is not efficient for hypersphere range query which is frequently used in similarity search. In this paper, we propose the Spherical Pyramid-Technique, an efficient indexing method for similarity search in high-dimensional space. The Spherical Pyramid-Technique is based on a special partitioning strategy, which is to divide the d-dimensional data space first into 2d spherical pyramids, and then cut the single spherical pyramid into several spherical slices. This partition provides a transformation of d-dimensional space into 1-dimensional space as the Pyramid-Technique does. Thus, we are able to use a B+-tree to manage the transformed 1-dimensional data. We also propose the algorithm of processing hypersphere range query on the space partitioned by this partitioning strategy. Finally, we show that the Spherical Pyramid-Technique clearly outperforms the Pyramid-Technique in processing hypersphere range queries through various experiments using synthetic and real data.
시퀀스란 두 항목 간의 순서가 존재하는 데이터를 말하며, 고객 한 명이 구매한 상품들이 나열된 구매이력 데이터는 대표적인 시퀀스 데이터 중 하나이다. 일반적으로 모든 상품은 대분류/ 중분류/ 소분류와 같은 상품 분류 체계를 가지며, 서로 다른 상품이더라도 비슷하다면 그 특성에 따라 동일한 범주로 분류된다. 따라서 본 논문에서는 두 구매이력 시퀀스 비교 시 상품의 구매 순서를 고려할 뿐만 아니라, 비교하고자 하는 두 상품이 다르더라도 서로 동일한 상품 군에 속한다면 더 높은 유사도를 부여하여 계산한다. 특히 구매이력 시퀀스 유사도 계산 성능에 직접적인 영향을 미치는 시퀀스 유사도 측정 방법을 선택하기 위해 본 연구에서는 대표적인 시퀀스 간 유사도 측정 방법인 레벤슈타인 거리, 동적 타임 워핑 거리, 니들만-브니쉬 유사도의 성능을 비교하였으며, 항목간의 계층구조도 반영하여 계산하도록 확장하였다. 기존의 유사도 측정 방법의 경우 시퀀스 내 상품 비교 시 상품의 일치 유무에 따라 단순히 0 또는 1의 값을 부여하여 계산한다. 하지만 제안 방법의 경우 서로 다른 상품이더라도 두 상품 간의 연관정도를 다르게 부여하기 위하여 상품 분류 트리를 사용하여 0에서 1 사이의 값을 가지도록 세분화하였다. 실험을 통해 세 알고리즘에 제안 방법을 적용한 경우 기존 방법에 비하여 구매이력 시퀀스 간의 유사도를 더 정확히 측정함을 확인하였다. 또한 정확성 측정 비교 실험을 통해 동적 타임 워핑 유사도가 다른 두 유사도 측정 방법에 비하여 시퀀스 내 상품의 연관 정도를 고려할 뿐만 아니라 두 시퀀스의 길이가 다른 경우에도 좋은 성능을 보였기 때문에 구매이력 데이터에서 시퀀스 간의 유사도 비교 시 가장 적합한 측정 방법임을 확인하였다.
빅데이터 시대에 접어들며 데이터에 대한 관심이 폭발적으로 늘어나고 있다. 특히, 인터넷 및 소셜미디어의 발전은 새로운 데이터들의 생성으로 연결되어 빅데이터와 인공지능 시대의 실현과 융합 기술의 새로운 장을 열 수 있게 되었으며, 과거에는 프로그램으로 다루지 못하던 데이터에 대한 분석 요구가 많이 발생하고 있다. 본 논문에서는 빅데이터 시대에서 많이 요구되는 비정형 데이터에 대한 분류를 위하여 분석 모델을 설계하고 이를 검증하였다. 데이터는 디비피아의 논문 요약과 주제어, 그리고 부주제 어를 크롤링하였으며, 코엔엘피의 데이터 사전을 이용해 데이터베이스를 생성하고, 형태소 분석을 통하여 단어의 토큰화 과정을 수행하였다. 또한, 카이스트의 9 품사 분류 체계를 이용해 명사를 추출하고, TF-IDF 값을 생성하였으며, 학습 데이터와 Y 값을 결합하여 분석 데이터 셋을 생성하였다. 이와 같이 생성된 분석 데이터 셋에 랜덤 포레스트와 서포트 벡터 머신 그리고 의사결정트리, 이렇게 세 가지 분석 알고리즘을 적용하여 분류의 적정성을 측정하였다. 본 논문에서 제안한 분류 모델 기법은 논문 분류 외에도 민원 분류 분석 및 텍스트 관련 분석 등 다양한 분야에 유용하게 사용될 수 있다.
이 연구는 2019년 남녀 핸드볼 세계선수권대회에 참가하는 모든 국가를 대상으로 국제핸드볼연맹이 제공한 공식 기록을 수집해 팀 경기 기록의 승패를 가리는 중요한 슈팅 변수를 규명하는 데 목적이 있다. 이 연구의 목적을 달성하기 위해 2019 핸드볼 세계선수권대회에 참가한 24개국 남녀대표팀의 총 192경기를 수집해 승패 그룹에 따른 대회 기록의 차이를 검증한 이후 8가지 슈팅 변수에 따라 승패요인을 분류하기 위해 데이터마이닝 기법의 하나인 의사결정 트리 방식(CART 알고리즘)을 적용해 분석했다. 분석 결과 9m 슈팅성공률과 Near 슈팅성공률이 남녀 모두에게 가장 중요한 요인으로 평가됐다. 남자는 9m 슈팅성공률이 32.5% 이상, Near 슈팅성공률이 67.5% 이상이면 83.3% 승리하며, 여자는 9m 슈팅성공률이 75%이상, Near 슈팅성공률이 51% 이상이면 75%를 승리한다. 또한, 여자팀은 페널티 요인 중 옐로카드는 승패를 결정짓는 중요 변수로 판단된다. 결론적으로 본 연구를 통하여 국제핸드볼 경기에서 승리와 패배 팀의 기록 특성 차이와 승패를 구분하는 중요 슈팅 변수를 남녀 모두에서 확인 할 수 있었다.
전 세계적으로 대기오염 관련 질병 발병률이 상승하고, 2022년 세계보건기구의 보고에 따르면 매년 약 700만 명의 사망자가 발생하고 있다. 또한, 산업 시설 확장과 다양한 배출원 증가, 그리고 악취 물질의 무분별한 방출로 인해 대기오염 문제는 사회적으로 중요성을 띄고 있다. 한국에서도 악취를 독립적인 환경오염으로 정의하며, 지역 주민의 건강에 직접적인 영향을 미치는 문제로 간주하고 있으나 현재까지 악취 관리가 미흡하며 악취 관리 시스템의 개선이 필요하다. 본 연구에서는 악취 관리 시스템 개선을 목표로 충청북도 오창에 설치된 악취 센서에서 수집한 1,010,749개 데이터를 활용하여 앙상블 기반의 악취 농도 다지역 통합 예측 모델을 설계하고 분석하였다. 연구 결과, XGBoost 알고리즘을 사용한 모델의 RMSE가 0.0096로 가장 성능이 좋았으며, 단일 지역 모델(0.0146)과 비교하여 평균 오차 크기가 51.9% 낮았다. 이를 통해 서로 다른 지역에서 수집된 악취 농도 데이터를 표준화한 후 다지역 통합 예측 모델을 설계함으로써 데이터의 양을 늘리고 정확도를 높일 수 있으며 또한, 하나의 통합 모델로 다양한 지역에서 예측이 가능함을 확인하였다.
본 연구에서는 두 개의 치료빔 가속기가 사용되는 구조에서 종양 위치 추적을 하는 두 쌍의 kV 영상시스템의 기하학적 설계 및 종양 위치 추적 정확도 분석을 목표로 하고 있다. 특히, 병변의 위치추적을 위한 수식 및 알고리즘을 수립하였고, 두 쌍의 kV 영상 시스템이 비직교 위치에 놓일 때 검출기 해상도가 종양 위치 추적 오차에 미치는 영향에 대해서 모의실험으로 분석하여 보았다. 병변의 위치추적을 위한 수식 및 알고리즘을 수립하기 위해서 각 엑스선원, 검출기 등의 절대좌표는 동차방정식을 이용하여 설정하였으며, 삼차원 상의 두 직선의 방정식을 통하여 병변의 절대위치를 찾아내도록 하였다. XCAT 프로그램을 이용한 모의실험을 통해서 영상 검출기의 해상도가 미치는 영향을 두 개의 kV 영상시스템의 각도에 따라서 분석하여보았다. XCAT 소프트웨어를 이용하여서 팬텀에 병변 추적을 위한 금속 기점 마커를 삽입하였고, CT projection 프로그램을 이용하여 각 kV 영상시스템의 각도별, 검출기의 해상도별 영상을 획득할 수 있다. 모의실험 결과, 두 kV영상시스템의 각도가 $90^{\circ}$에서 $50^{\circ}$까지는 검출기 해상도가 1.5 mm/pixel보다 고해상도 일 때 약 1 mm 이하의 위치 오차를 보였다. 하지만, 검출기의 해상도가 1.5 mm/pixel 이상으로 나빠질수록 오차가 약 1 mm 이상으로 나타날 뿐만 아니라 각도에 따른 오차의 변동이 컸다. 검출기의 해상도가 개선될 수록 그 각도별 오차의 변동이 줄어들고, $90^{\circ}$에서 가장 적은 오차가 발생 하는 것을 볼 수 있었다. 충분한 해상도의 검출기가 사용된다면 듀얼헤드 겐트리 시스템과 같이 공간적으로 제한된 방사선 치료기기에 두 개의 kV 영상시스템을 예각으로 설치하여도 된다는 결론을 도출할 수 있었다. 본 연구에서 개발한 모의실험 방법론은 병변의 위치, 검출기의 특성, kV 영상 시스템의 기하학적 배치에 따른 종양추적 위치 추적시스템의 정확도를 분석하는 도구로서 유용하게 사용될 수 있을 것이다.
3D 프린터의 활용이 높아짐에 따라 발생하는 화학물질에 대한 노출 빈도가 증가하고 있다. 그러나 3D 프린팅 발생 화학물질의 독성 및 유해성에 대한 연구는 미비하며, 분자 구조 데이터의 결측치로 인해 in silico 기법을 사용한 독성예측 연구는 저조한 실정이다. 본 연구에서는 화학물질의 분자구조 정보를 나타내는 주요 분자표현자의 결측치를 보간하여 3D 프린팅의 독성 및 유해성을 예측한 Data-centric QSAR 모델을 개발하였다. 먼저 MissForest 알고리즘을 사용해 3D 프린팅으로 발생되는 유해물질의 분자표현자 결측치를 보완하였으며, 서로 다른 4가지 기계학습 모델(결정트리, 랜덤포레스트, XGBoost, SVM)을 기반으로 Data-centric QSAR 모델을 개발하여 생물 농축 계수(Log BCF)와 옥탄올-공기분배계수(Log Koa), 분배계수(Log P)를 예측하였다. 또한, 설명 가능한 인공지능(XAI) 방법론 중 TreeSHAP (SHapley Additive exPlanations) 기법을 활용하여 Data-centric QSAR 모델의 신뢰성을 입증하였다. MissForest 알고리즘 기반 결측지 보간 기법은, 기존 분자구조 데이터에 비하여 약 2.5배 많은 분자구조 데이터를 확보할 수 있었다. 이를 바탕으로 개발된 Data-centric QSAR 모델의 성능은 Log BCF, Log Koa와 Log P를 각각 73%, 76%, 92% 의 예측 성능으로 예측할 수 있었다. 마지막으로 Tree-SHAP 분석결과 개발된 Data-centric QSAR 모델은 각 독성치와 물리적으로 상관성이 높은 분자표현자를 통하여 선택함을 설명할 수 있었고 독성 정보에 대한 높은 예측 성능을 확보할 수 있었다. 본 연구에서 개발한 방법론은 다른 프린팅 소재나 화학공정, 그리고 반도체/디스플레이 공정에서 발생 가능한 오염물질의 독성 및 인체 위해성 평가에 활용될 수 있을 것으로 사료된다.
질의응답 시스템은 크게 사용자의 질의를 분석하는 방법인 질의 분석과 문서 내에서 적합한 정답을 추출하는 방법인 정답 추출로 이루어지며, 두 방법에 대한 다양한 연구들이 진행되고 있다. 본 연구에서는 문장의 의존 구문 분석 결과를 이용하여 질의응답 시스템 내 정답 추출의 성능 향상을 위한 연구를 진행한다. 정답 추출의 성능을 높이기 위해서는 문장의 문법적인 정보를 정확하게 반영할 필요가 있다. 한국어의 경우 어순 구조가 자유롭고 문장의 구성 성분 생략이 빈번하기 때문에 의존 문법에 기반한 의존 구문 분석이 적합하다. 기존에 의존 구문 분석을 질의응답 시스템에 반영했던 연구들은 구문 관계 정보나 구문 형식의 유사도를 정의하는 메트릭을 사전에 정의해야 한다는 한계점이 있었다. 또 문장의 의존 구문 분석 결과를 트리 형태로 표현한 후 트리 편집 거리를 계산하여 문장의 유사도를 계산한 연구도 있었는데 이는 알고리즘의 연산량이 크다는 한계점이 존재한다. 본 연구에서는 구문 패턴에 대한 정보를 사전에 정의하지 않고 정답 후보 문장을 그래프로 나타낸 후 그래프 정보를 효과적으로 반영할 수 있는 Graph2Vec을 활용하여 입력 자질을 생성하였고, 이를 정답 추출모델의 입력에 추가하여 정답 추출 성능 개선을 시도하였다. 의존 그래프를 생성하는 단계에서 의존 관계의 방향성 고려 여부와 노드 간 최대 경로의 길이를 다양하게 설정하며 자질을 생성하였고, 각각의 경우에 따른 정답추출 성능을 비교하였다. 본 연구에서는 정답 후보 문장들의 신뢰성을 위하여 웹 검색 소스를 한국어 위키백과, 네이버 지식백과, 네이버 뉴스로 제한하여 해당 문서에서 기존의 정답 추출 모델보다 성능이 향상함을 입증하였다. 본 연구의 실험을 통하여 의존 구문 분석 결과로 생성한 자질이 정답 추출 시스템 성능 향상에 기여한다는 것을 확인하였고 해당 자질을 정답 추출 시스템뿐만 아니라 감성 분석이나 개체명 인식과 같은 다양한 자연어 처리 분야에 활용 될 수 있을 것으로 기대한다.
현 정부의 주요 국책사업 중 하나인 도시재생 뉴딜사업은 매년 100 곳씩, 5년간 500곳을대상으로 50조를 투자하여 낙후된 지역을 개발하는 것으로 언론과 지자체의 높은 이목이 집중되고 있다. 그러나, 현재 이 사업모델은 면적 규모에 따라 "우리동네 살리기, 주거정비지원형, 일반근린형, 중심시가지형, 경제기반형" 등 다섯 가지로 나뉘어 추진되어 그 지역 본래의 특성을 반영하지 못하고 있다. 국내 도시재생 성공 키워드는 "주민 참여", "지역특화" "부처협업", "민관협력"이다. 성공 키워드에 따르면 지자체에서 정부에게 도시재생 사업을 제안할 때 지역주민, 민간기업의 도움과 함께 도시의 특성을 정확히 이해하고 도시의 특성에 어울리는 방향으로 사업을 추진하는 것이 가장 중요하다는 것을 알 수 있다. 또한 도시재생 사업 후 발생하는 부작용 중 하나인 젠트리피케이션 문제를 고려하면 그 지역 특성에 맞는 도시재생 유형을 선정하여 추진하는 것이 중요하다. 이에 본 연구는 '도시재생 뉴딜 사업' 방법론의 한계점을 보완하기 위해, 기존 서울시가 지역 특성에 기반하여 추진하고 있는 "2025 서울시 도시재생 전략계획"의 도시재생 유형을 참고하여 도시재생 사업지에 맞는 도시재생 유형을 추천하는 시스템을 머신러닝 알고리즘을 활용하여 제안하고자 한다. 서울시 도시재생 유형은 "저이용저개발, 쇠퇴낙후, 노후주거, 역사문화자원 특화" 네 가지로 분류된다 (Shon and Park, 2017). 지역 특성을 파악하기 위해 총 4가지 도시재생 유형에 대해 사업이 진행된 22개의 지역에 대한 뉴스 미디어 10만여건의 텍스트 데이터를 수집하였다. 수집된 텍스트를 이용하여 도시재생 유형에 따른 지역별 주요 키워드를 도출하고 토픽모델링을 수행하여 유형별 차이가 있는 지 탐색해 보았다. 다음 단계로 주어진 텍스트를 기반으로 도시재생 유형을 추천하는 추천시스템 구축을 위해 텍스트 데이터를 벡터로 변환하여 머신러닝 분류모델을 개발하였고, 이를 검증한 결과 97% 정확도를 보였다. 따라서 본 연구에서 제안하는 추천 시스템은 도시재생 사업을 진행하는 과정에서 신규 사업지의 지역 특성에 기반한 도시재생 유형을 추천할 수 있을 것으로 기대된다.
목 적 : Spine SBRT 치료 시 보편적인 치료방법인 콜리메이터 각도 $30^{\circ}$와 $330^{\circ}$를 각각 사용한 2회전 치료계획 (이하 Universal MLC VMAT)과 MLC 운동 방향과 척수 또는 마미 (이하 OAR)의 장축을 일치시킨 콜리메이터 각도 $273^{\circ}$와 $350^{\circ}$를 사용한 2회전 치료계획 (이하 Coaxial MLC VMAT) 유용성을 비교, 평가하고자 한다. 대상 및 방법 : 본원에서 Varian TBX을 이용하여, Coaxial MLC VMAT 치료 계획으로 치료 받은 spine SBRT환자 10명을 대상으로 하였다. 전산화치료계획은 Eclipse (ver 10.0.42, Varian, USA), PRO3 (Progressive Resolution Optimizer 10.0.28), AAA (Anisotropic Analytic Algorithm Ver 10.0.28) 알고리즘을 이용하였다. 치료계획은 VMAT로 겐트리 회전반경이 각각 $360^{\circ}$인 두 개의 ARC, 10MV FFF (Flattening Filter Free)를 이용하여 수립하였고, 각 ARC는 콜리메이터 각도 $273^{\circ}$, $350^{\circ}$로 설정하였다. 기존 치료계획을 바탕으로 실험군인 Universal MLC VMAT 치료계획을 수립하였다. 콜리메이터 각도를 제외한 모든 조건은 동일하게 설정하였으며, 특히 최적화 (VMAT optimization) 과정에서 무작위하게 나타나는 선량차이를 최소화하기 위해 각각 2회의 최적화, 선량 계산 과정을 거쳤다. 계산 grid 는 0.2 cm, normalization은 타겟 $V_{100%}=90%$로 설정하였다. OAR의 선량 $V_{10Gy}$, $D_{0.03cc}$, Dmean, 타겟의 H.I (Homogeneity index) 그리고 각 치료 계획의 Total MU를 평가 지표로 설정하였고, Mapcheck2 (Sun Nuclear Co., USA) 와 Mapphan (Sun Nuclear Co., USA) 그리고 SNC patient (Sun Nuclear Co., USA Ver 6.1.2.18513) 를 이용하여 Coaxial MLC VMAT 계획의 임상 적용 가능 여부 확인을 위한 IMRT verification QA (gamma test)를 실시하였다. 결 과 : 두 치료계획을 비교한 결과 OAR의 $V_{10Gy}$차이는 최대 4.1%, 최소 0.4%, 평균 1.9%로, $D_{0.03cc}$ 는 최대 83.5 cGy, 최소 2.2 cGy, 평균 33.3 cGy로 Coaxial MLC VMAT plan 이 더 낮은 것으로 나타났다. Dmean 또한 최대 34.8 cGy, 최소 -13.0 cGy, 평균 9.6 cGy로 Coaxial MLC VMAT plan 이 낮은 것으로 나타났다. H.I. 는 최대 0.04, 최소 0.01로 Coaxial MLC VMAT plan 이 평균 0.02 낮은 것으로 나타났으며, Total MU의 평균값을 비교한 결과 Coaxial MLC VMAT plan 이 평균 74.1 MU 더 낮게 나타났다. Coaxial MLC VMAT plan에 대한 IMRT verification gamma test 결과는 1 mm / 2%, pass rate 90.0% 기준을 모두 통과하였다. 결 론 : Coaxial MLC VMAT 치료계획은 Universal MLC VMAT 치료계획에 비해 대부분의 평가지표에서 유리한 것으로 나타냈으며 특히 OAR의 선량 $V_{10Gy}$을 낮추는데 있어 탁월한 것으로 사료된다. 실험결과를 바탕으로 두 치료 계획을 비교해 볼 때, 같은 MU를 사용한다면 Coaxial MLC VMAT 치료계획이 Universal MLC VMAT 치료계획에 비해 효율적이라 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.