• Title/Summary/Keyword: 트리플

Search Result 461, Processing Time 0.027 seconds

Triple Extraction for RDF Graph Construction from Wikipedia Articles (위키피디아 문서로부터 트리플 추출과 RDF 그래프 생성)

  • Lee, SoonWoong;Choi, KeySun
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.106-110
    • /
    • 2009
  • 웹이 발전하면서 점점 더 많은 정보가 웹을 통해 생성되고 공유되고 있다. 하지만 정보의 급격한 증가로 인해 정작 정확한 정보를 찾는 것은 오히려 더 어려워지고 있고, 이로 인해 특히 구조화되지 않은 텍스트에 대한 정확한 정보 검색의 필요성이 증가하고 있다. 본 논문에서는 위키피디아 문장들로부터 RDF 트리플을 추출하고 이를 하나의 연결된 RDF 그래프로 구성함으로써 효과적인 정보 검색을 수행하는 방법을 제안하고자 한다. 트리플 추출 방법은 문장에 대한 파스 트리를 탐색함으로써 이루어지는데, 약 81%의 정확도를 나타내었다. 최종적으로 생성되는 RDF 그래프는 입력 문장들의 문법적인 요소만을 고려하기 때문에 방법이 단순하지만 그래프 탐색을 통해 다양한 쿼리에 대한 정보 검색이 가능하다.

  • PDF

Design of a Contextual Lexical Knowledge Graph Extraction Algorithm (맥락적 어휘 지식 그래프 추출 알고리즘의 설계)

  • Nam, Sangha;Choi, Gyuhyeon;Hahm, Younggyun;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.147-151
    • /
    • 2016
  • 본 논문에서는 Reified 트리플 추출을 위한 한국어 개방형 정보추출 방법을 제시한다. 시맨틱웹 분야에서 지식은 흔히 RDF 트리플 형태로 표현되지만, 자연언어문장은 복수개의 서술어와 논항간의 관계로 구성되어 있다. 이러한 이유로, 시맨틱웹의 대표적인 지식표현법인 트리플을 따름과 동시에 문장의 의존구조를 반영하여 복수개의 술어와 논항간의 관계를 지식화하는 새로운 개방형 정보추출 시스템이 필요하다. 본 논문에서는 문장 구조에 대한 일관성있는 변환을 고려한 새로운 개방형 정보추출 방법을 제안하며, 개체 중심의 지식과 사건중심의 지식을 함께 표현할 수 있는 Reified 트리플 추출방법을 제안한다. 본 논문에서 제안한 방법의 우수성과 실효성을 입증하기 위해 한국어 위키피디아 알찬글 본문을 대상으로 추출된 지식의 양과 정확도 측정 실험을 수행하였고, 본 논문에서 제안한 방식을 응용한 의사 SPARQL 질의 생성 모듈에 대해 소개한다.

  • PDF

A Hypergraph-based Modeling for Temporal RDF (하이퍼 그래프 기반 Temporal RDF 모델링 기법)

  • Lee, Taewhi;Im, Dong-Hyuk
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.04a
    • /
    • pp.694-696
    • /
    • 2015
  • RDF 데이터에 대한 시간 속성에 대한 연구는 트리플의 속성에 시간을 부여하는 방법이 많이 사용되고 있다. 하지만 트리플마다 시간 속성을 부여하는 방법은 저장 및 관리 측면에서 비효율적이다. 본 논문에서는 하이퍼그래프 기반의 RDF 시간 속성 모델링 방법을 제안한다. 하나의 트리플마다 시간 속성을 부여하는 것이 아닌 여러 재의 트리플을 하나의 하이퍼 간선으로 연결하여 시간 속성을 부여하는 방법으로 기존 방법보다 RDF 데이터가 가지는 의미에 적합하며 직관적으로 이해하기가 쉽다. 또한 시간 속성 RDF에서 지원해야 하는 시간 관계를 하이퍼그래프의 여러 속성을 이용하여 처리할 수 있는 장점을 가지게 된다.

Improving The Performance of Triple Generation Based on Distant Supervision By Using Semantic Similarity (의미 유사도를 활용한 Distant Supervision 기반의 트리플 생성 성능 향상)

  • Yoon, Hee-Geun;Choi, Su Jeong;Park, Seong-Bae
    • Journal of KIISE
    • /
    • v.43 no.6
    • /
    • pp.653-661
    • /
    • 2016
  • The existing pattern-based triple generation systems based on distant supervision could be flawed by assumption of distant supervision. For resolving flaw from an excessive assumption, statistics information has been commonly used for measuring confidence of patterns in previous studies. In this study, we proposed a more accurate confidence measure based on semantic similarity between patterns and properties. Unsupervised learning method, word embedding and WordNet-based similarity measures were adopted for learning meaning of words and measuring semantic similarity. For resolving language discordance between patterns and properties, we adopted CCA for aligning bilingual word embedding models and a translation-based approach for a WordNet-based measure. The results of our experiments indicated that the accuracy of triples that are filtered by the semantic similarity-based confidence measure was 16% higher than that of the statistics-based approach. These results suggested that semantic similarity-based confidence measure is more effective than statistics-based approach for generating high quality triples.

Improving Embedding Model for Triple Knowledge Graph Using Neighborliness Vector (인접성 벡터를 이용한 트리플 지식 그래프의 임베딩 모델 개선)

  • Cho, Sae-rom;Kim, Han-joon
    • The Journal of Society for e-Business Studies
    • /
    • v.26 no.3
    • /
    • pp.67-80
    • /
    • 2021
  • The node embedding technique for learning graph representation plays an important role in obtaining good quality results in graph mining. Until now, representative node embedding techniques have been studied for homogeneous graphs, and thus it is difficult to learn knowledge graphs with unique meanings for each edge. To resolve this problem, the conventional Triple2Vec technique builds an embedding model by learning a triple graph having a node pair and an edge of the knowledge graph as one node. However, the Triple2 Vec embedding model has limitations in improving performance because it calculates the relationship between triple nodes as a simple measure. Therefore, this paper proposes a feature extraction technique based on a graph convolutional neural network to improve the Triple2Vec embedding model. The proposed method extracts the neighborliness vector of the triple graph and learns the relationship between neighboring nodes for each node in the triple graph. We proves that the embedding model applying the proposed method is superior to the existing Triple2Vec model through category classification experiments using DBLP, DBpedia, and IMDB datasets.

Scalable RDFS Reasoning using Logic Programming Approach in a Single Machine (단일머신 환경에서의 논리적 프로그래밍 방식 기반 대용량 RDFS 추론 기법)

  • Jagvaral, Batselem;Kim, Jemin;Lee, Wan-Gon;Park, Young-Tack
    • Journal of KIISE
    • /
    • v.41 no.10
    • /
    • pp.762-773
    • /
    • 2014
  • As the web of data is increasingly producing large RDFS datasets, it becomes essential in building scalable reasoning engines over large triples. There have been many researches used expensive distributed framework, such as Hadoop, to reason over large RDFS triples. However, in many cases we are required to handle millions of triples. In such cases, it is not necessary to deploy expensive distributed systems because logic program based reasoners in a single machine can produce similar reasoning performances with that of distributed reasoner using Hadoop. In this paper, we propose a scalable RDFS reasoner using logical programming methods in a single machine and compare our empirical results with that of distributed systems. We show that our logic programming based reasoner using a single machine performs as similar as expensive distributed reasoner does up to 200 million RDFS triples. In addition, we designed a meta data structure by decomposing the ontology triples into separate sectors. Instead of loading all the triples into a single model, we selected an appropriate subset of the triples for each ontology reasoning rule. Unification makes it easy to handle conjunctive queries for RDFS schema reasoning, therefore, we have designed and implemented RDFS axioms using logic programming unifications and efficient conjunctive query handling mechanisms. The throughputs of our approach reached to 166K Triples/sec over LUBM1500 with 200 million triples. It is comparable to that of WebPIE, distributed reasoner using Hadoop and Map Reduce, which performs 185K Triples/sec. We show that it is unnecessary to use the distributed system up to 200 million triples and the performance of logic programming based reasoner in a single machine becomes comparable with that of expensive distributed reasoner which employs Hadoop framework.

Design and Implementation of a COncept-based Image Retrieval System: COIRS (개념 기반 이미지 정보 검색 시스템 COIRS의 설계 및 구현)

  • Yang, Hyung-Jeong;Kim, Ho-Young;Yang, Jae-Dong;Hur, Dae-Young
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.12
    • /
    • pp.3025-3035
    • /
    • 1998
  • In this paper, we describe the design and implementationof COIRS COncept,based Image Retricval System). It differs from extant content-based image retrieval systems in that it enables users to query based on concepts- it allows users to get images concepmally relevant. A concept is basically an aggregation of promitive objects in an image. For such a cencept based image retrieval functionality. COIRS aglopts an image descriptor called triple and includes a triple thesaurus used for capturing concepts. There are four facilities in COIRS: a visual image indeses a triple thesaurus, an inverted fiel, and a user query interface. The visnal image indeser facilitates object laeling and the percification of positionof objects. It is an assistant tool designed to minimize manual work when indexing images. The thesarrus captires the concepts by analyzing triples, thereby extracting image semantics. The triples are then for formalating queries as well as indexing images. The user query interiare enables users to formulate...

  • PDF

Novel F-shaped Triple Gate Structure for Suppression of Kink Effect and Improvement of Hot Carrier Reliability in Low Temperature polycrystalline Silicon Thin-Film Transistor (킹크효과 억제를 위한 새로운 f-모양 트리플게이트 구조의 저온 다결정실리콘 박막트랜지스터)

  • Song, Moon-Kyu;Choi, Sung-Hwan;Kuk, Seung-Hee;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1416-1417
    • /
    • 2011
  • 킹크효과를 억제할 수 있는 새로운 f-모양 트리플게이트 구조를 가지는 다결정실리콘 박막트랜지스터는 추가적인 공정과정 없이 제안 및 제작되었다. 이러한 다결정실리콘 박막트랜지스터의 채널에는 순차적인 횡방향 고체화(Sequential Lateral Solidification, SLS)나 CW 레이져 횡방향 결정화(CW laser Lateral Crystallization, CLC) 등과 같은 방법으로 제작된 횡방향으로 성장시킨 그레인이 있다. 이 소자의 전체적인 전류흐름은 횡방향으로 성장시킨 그레인 경계에 강력하게 영향을 받는다. f-모양 트리플게이트에는 횡방향으로 성장시킨 그레인과 평행한 방향으로 위치한 채널, 그리고 수직인 방향으로 위치한 채널이 있다. 이 소자는 f-모양 게이트 구조에서의 비대칭 이동도를 이용하여 다결정실리콘 박막트랜지스터의 킹크효과를 효과적으로 억제시킬 수 있다는 사실을 실험과 시뮬레이션을 통해 검증되었다. 우리의 실험 결과는 이 논문에서 제안된 f-모양 트리플게이트 박막트랜지스터가 기존의 박막트랜지스터와 비교할 때 더 효과적으로 킹크 효과를 감소시킬 수 있다는 것을 보여주었다. 또한 고온 캐리어 스트레스 조건에서의 신뢰성도 개선할 수 있음이 확인되었다.

  • PDF

Efficient Reasoning Using View in DBMS-based Triple Store (DBMS기반 트리플 저장소에서 뷰를 이용한 효율적인 추론)

  • Lee, Seungwoo;Kim, Jae-Han;You, Beom-Jong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.74-78
    • /
    • 2009
  • Efficient reasoning has become important for improving the performance of ontology systems as the size of ontology grows. In this paper, we introduce a method that efficiently performs reasoning of RDFS entailment rules (i.e., rdfs7 and rdfs9 rules) and OWL inverse rule using views in the DBMS-based triple sotre. Reasoning is performed by replacing reasoning rules with the corresponding view definition and storing RDF triples into the structured triple tables. When processing queries, the views is referred instead of original tables. In this way, we can reduce the time needed for reasoning and also obtain the space-efficiency of the triple store.

  • PDF

Image Retrieval with Fuzzy Triples to Support Inexact and Concept-based Match (근사 정합과 개념 기반 정합을 지원하는 퍼지 트리플 기반 이미지 검색)

  • Jeong, Seon-Ho;Yang, Jae-Dong;Yang, Hyeong-Jeong
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.8
    • /
    • pp.964-973
    • /
    • 1999
  • 본 논문에서는 퍼지 트리플을 사용하는 내용 기반 이미지 검색 방법을 제안한다. 이미지 내 객체들 사이의 공간 관계는 내용 기반 이미지 검색을 위해 사용되는 주요한 속성들 중의 하나이다. 그러나, 기존의 트리플을 이용한 이미지 검색 시스템들은 개념 기반 검색 방법을 지원하지 못하고, 방향들 사이의 근사 정합을 처리하지 못하는 문제점을 가지고 있다. 이 문제를 해결하기 위하여 본 논문에서는 개념 기반 정합과 근사 정합을 지원하는 퍼지 트리플을 이용한 이미지 검색 방법을 제안한다. 개념 기반 정합을 위해서는 퍼지 소속성 집합으로 이루어진 시소러스가 사용되며, 근사 정합을 위해서는 방향들 사이의 관계를 정량화 하기 위한 k-weight 함수가 각각 이용된다. 이 두 가지 정합은 퍼지 트리플 간의 퍼지 정합을 통하여 균일하게 지원될 수 있다. 본 논문에서는 또한, 개념 기반 정합과 근사 정합에 대한 검색 효과를 정량적으로 평가하는 작업을 수행한다. Abstract This paper proposes an inexact and a concept-based image match technique based on fuzzy triples. The most general method adopted to index and retrieve images based on this spatial structure may be triple framework. However, there are two significant drawbacks in this framework; one is that it can not support a concept-based image retrieval and the other is that it fails to deal with an inexact match among directions. To compensate these problems, we develope an image retrieval technique based on fuzzy triples to make the inexact and concept-based match possible. For the concept-based match, we employ a set of fuzzy membership functions structured like a thesaurus, whereas for the inexact match, we introduce k-weight functions to quantify the similarity between directions. In fuzzy triples, the two facilities are uniformly supported by fuzzy matching. In addition, we analyze the retrieval effectiveness of our framework regarding the degree of the conceptual matching and the inexact matching.