• Title/Summary/Keyword: 트리플루오르에탄올

Search Result 3, Processing Time 0.02 seconds

Preparation of Methylenediphenyldiurethanes by the Acid Rearrangement of [(Ethoxycarbonyl)phenylaminomethyl] phenylcarbamic Acid Ethyl Esters ([(에톡시카르보닐)페닐아미노메틸]페닐카르바민산 에틸에스테르의 산 재배열에 의한 메틸렌 디페닐디우레탄의 제조)

  • Park, Nae-Joung
    • Applied Chemistry for Engineering
    • /
    • v.7 no.1
    • /
    • pp.51-58
    • /
    • 1996
  • The rearrangement of [(ethoxycarbonyl)phenylaminomethyl]phenylcarbamic acid ethyl esters(N-benzyl compounds) to methylenediphenyldiurethanes(MDU) in sulfuric acid, sulfuric acid-absolute ethanol solvent system, and sulfuric acid-nitrobenzene solvent system, and boron trifluoride at $90^{\circ}C$ was studied. The production of MDU was the highest in sulfuric acid-nitrobenzene system giving 64% MDU yield, of which 58% was 4,4'-MDU. The simultaneous condensation of EPC and formaldehyde and rearrangement to MDU were studied in the presence of different amounts of sulfuric acid, trifluoroacetic acid, and boron trifluoride at $70^{\circ}C$. Though 17mmol of sulfuric acid with 30mmol of EPC produced the highest MDU, the MDU yield was much lower than that from separate condensation and rearrangement reaction.

  • PDF

A Optimization of the ORC for Ship's Power Generation System (해수 온도차를 이용한 선박의 ORC 발전 시스템 최적화)

  • Oh, Cheol;Song, Young-Uk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.595-602
    • /
    • 2012
  • In this study, for the purpose of reduction of $CO_2$ gas emission and to increase recovery of waste heat from ships, the ORC (Organic Rankine Cycle) is investigated and offered for the conversion of temperature heat to electricity from waste heat energy from ships. Simulation was performed with waste heat from the exhaust gasse which is relatively high temperature and cooling sea water which is relatively low temperature from ships. Various fluid is used for simulation of the ORC system with variable temperature and flow condition and efficiency of system and output power is compared. Finally, 2,400kW output power is obtained by system optimization of the preheater and reheater utilizing waste heat form sea water cooling system.

A Study on the Ship's ORC Power System using Seawater Temperature Difference (선박의 해수 온도차를 이용한 ORC 발전 시스템에 관한 연구)

  • Oh, Cheol;Song, Young-Uk
    • Journal of Navigation and Port Research
    • /
    • v.36 no.5
    • /
    • pp.349-355
    • /
    • 2012
  • In this study, for the purpose of reduction of $CO_2$ gas emission and to increase recovery of waste heat from ships, the ORC(Organic Rankine Cycle) is investigated and offered for the conversion of temperature heat to electricity from waste heat energy from ships. Simulation is performed with waste heat from the exhaust gasse which is relatively high temperature and cooling sea water which is relatively low temperature from ships. The result shows that 1,000kW power generation is available from exhaust gas and 600kW power generation is available from sea water cooling system. Different fluid is used for simulation of the ORC system with variable temperature and flow condition and efficiency of system and output power is compared.