• Title/Summary/Keyword: 트러스요소

Search Result 131, Processing Time 0.025 seconds

Study on the Scientific Functional Investigation of Steel Space Truss Structures by using Technology Tree Methodology (기술트리를 이용한 입체트러스 강구조물의 과학적 기능분석 방법론에 관한 연구)

  • Lee, Dong Kyu;Kim, Do Hwan;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.4
    • /
    • pp.321-333
    • /
    • 2013
  • This study presents a practice of a scientific methodology, i.e., technology tree to describe hierarchies of functions and technologies of research projects. In this study functional developments of a well-known steel space frame truss are dealt with for an application of the technology tree process to execute the maintenance of road tunnels without blocking vehicles. It is verified that established results of technology tree process can be linked to a proof process of revealed functions and component technologies such as reference works and structural analyses. In the future the technology tree methodology can be extendedly used for an effective tool setting up research plans and developing integrated technologies of a specific item such as a steel structure.

Dynamic Characteristic of Truss Type Lift Gate by Model Tests (모형실험에 의한 트러스형 리프트 게이트의 진동 특성)

  • Lee, Seong Haeng;Shin, Dong Wook;Kim, Kyoung Nam;Jung, Kyoung Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.337-345
    • /
    • 2012
  • A model test is performed to investigate the dynamic behavior of truss type lift gate which is being constructed by the four major rivers project. The gate dimensioned 40 m in width, 9m in height is scaled with the ratio of 1:25 and is made of acryl panel and supplemented weight by lead in the concrete test flume dimensioned 1.2 m in width, 0.5 m in height and 30m in length. Firstly natural frequencies of the model gate are measured and compared with the numerical results for the calibration. The amplitudes of the vibration are measured under the different gate opening, upstream water level conditions. Also models with bottom angle $20^{\circ}$, $35^{\circ}$ and $50^{\circ}$ are tested and compared to find out a proper shape of bottom structure which minimizes the gate vibration. These test results presents a basic data for the guide manuals of gate management and a design method to reduce the gate vibration of truss type lift gate.

Design of Load and Strain Measuring Equipment Using Strain Gage, Instrumental Differential Amplifier and A/D Converter in a Truss System (스트레인 게이지 계측용 차동 증폭기와 A/D 변환기를 이용한 트러스 구조물의 내력 측정 장치 설계)

  • Baek, Tae-Hyun;Lee, Byung-Hee
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.217-224
    • /
    • 2008
  • Trusses are found in many common structures such as bridges and buildings. The truss is a fundamental design element in engineering structures and it is important for an engineer to apply the truss design to engineering structures by understanding the mechanics of truss element. In an experimental course, the experiment selves as an example of the usefulness of the Wheatstone bridge in amplifying the output of a transducer. With the apparatus described here, it is possible to obtain experimental measurements of forces in a truss member which agree within errors to predictions from elementary mechanics. The apparatus is inexpensive, easy to operate, and suitable as either a classroom demonstration or student laboratory experiment. This device is a small table-top experiment. The conventional strain measuring device is costly and complicated - it is not simple to understand its structure. Hence, strain gage and the A/D converter are assembled to come up with a load and a strain measuring device. The device was tested for measuring the strain in a loaded specimen and the results were compared to those predicted by theory of mechanics.

Section Analysis of EMS Rail by Finite Element Analysis (유한요소해석을 통한 EMS 레일 단면 해석)

  • Yu, Byoung Kwon
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.1
    • /
    • pp.63-69
    • /
    • 2015
  • Among the material handling system, EMS (Electric Monorail System), which is the facility of transferring the material hanging on truss, has the strength point of the maximum utilization of working space and the improvement of working environment including low-level noise generation. This paper will introduce the variable method of EMS rail analysis, which has the main role of supporting the whole material weight and guiding them with high-speed transportation, and, based on the analysis, the direction of optimization of the rail design be described. The rail with light-weight and high-strength contributes the reduction of the load of truss, the cost-down of rail production and the easy-installation on site.

A Three-Dimensional Material Nonlinear Analysis of Reinforced Concrete (철근콘크리트의 3차원 재료비선형해석)

  • 박성수;성재표
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.2
    • /
    • pp.119-127
    • /
    • 1996
  • Objection of this study is to present the three-dimensional material nonlinear analysis of reinforced concrete. A concrete is idealized with three-dimensional 16-node solid element including triaxial nonlinear stress-strain behavior, cracking, crushing and strain softening: a steel with three-dimensional 3 node truss element including elastic-plastic behavior with strain hardening. The cracked shear retention factor is introduced to estimate the effective shear modulus con sidering aggregate interlock after c:racking and a modified newton method is used to obtain a nu merical solution. Numerical results in a gauss point is displayed graphically. Numerical examples of Krahl's reinforced concrete beam and Hedgreds shell are selected to compare with the experimental and numerical results.

Assessment of Structural Performance for a Lightweight Soundproof Tunnel Composed of Partitioned Pipe Truss Members (격벽화된 파이프 트러스 요소로 구성된 경량방음터널의 구조적 성능 평가)

  • Noh, Myung-Hyun;Ahn, Dong-Wook;Joo, Hyung-Joong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • In this paper, the full-size structural performance test for a lightweight soundproof tunnel composed of partitioned pipe truss members is carried out to investigate the structural performance. In addition, a nonlinear structural analysis of the same finite element model as the full-size testing model is performed to compare the test result. The test and analysis results showed that the lightweight soundproof tunnel ensures the structural safety against wind loads, snow loads and load combinations. As a result, the full-size test and analysis results meet all the design load conditions, hence the proposed lightweight soundproof tunnel is ready for the field application.

A Study on Vibration Power Flow of Truss Core Type Sandwich Plate Structure (트러스코어형 샌드위치 판구조물의 진동파워흐름에 관한 연구)

  • 구경민;김동영;홍도관;박일수;안찬우;한근조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.863-866
    • /
    • 2002
  • In this study, we tried to grasp the characteristic of vibration power flow for the truss core type sandwich plate structure. As the result of the finite element analysis, this paper shows that the vibration power flow characteristic of truss core type sandwich plate structure is understood and the vibration power flow of upper plate according to the mode shape of structure is various. Also it presents the vibration power flow is affected by reinforced structure.

  • PDF

Analysis on the Construction Cost of Steel Truss Stadium (철골 트러스 스타디움 구조물의 공사비 분석)

  • Jang, Myung-Ho;Sur, Sam-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.2 s.24
    • /
    • pp.75-82
    • /
    • 2007
  • Building costs means capital costs which include cost of land, cost of acquiring and preparing the site, construction costs, engineering fees, furnishings, cost of financing the project, and cost of management required to run and maintenance the building for use. An economic analysis is one of the most important factor to determine the project feasibility. The purpose of the this study is to analysis on the construction cost structure of steel truss stadium.

  • PDF

유한요소법의 기본리론과 응용(II) -방향변환에 따르는 변환 매트릭스-

  • 김항욱
    • Journal of the KSME
    • /
    • v.17 no.1
    • /
    • pp.40-44
    • /
    • 1977
  • 먼저번에는(대한기계학회지 제16권 제4호 1976) 유한요소법의 중심부를 통하는 기본로선을 따라 가면서 기초 개념을 해설하였다. 이 해설에서 앞으로 취급될 사항은 다음과 같다. 1. 트러스 구조물의 정역학적 문제를 예제로 다루며 방향변환에 따르는 "변환매트릭스"해설 2. 기둥의 탄성 안정 문제를 예제로 다루며 비 선형 문제에서 등장하는 "추가 강성매트 릭스 (Incremental Stiffness Matrix)[N]의 해설 3. 1차원 문제에 있어서의 여러 가지 유한요소 해설 4. 2차원 문제에 있어서 평면형을 갖는 여러 가지 유한요소 해설 5. 2차원 문제에 있어서 곡면형을 갖는 여러 가지 유한요소 해설 6. 유한요소법의 발전 전망 7. 전자계산기 프로그래밍에 있어서의 여러문제 해설의 대상자는 공과대학 기계계열의 상급학년 학생 또는 고체역학 부문에 경력을 갖는 기술자 들로서 이 부문의 기본지식을 갖고 있는 자로 한다. 이번회에는 유한요소의 자유도 즉 미지상 수로 다루어지는 자변수의 좌표축이 바뀔 때 부수적으로 등장하는 변환 매트릭스에 대하여 해 설한다.트릭스에 대하여 해 설한다.

  • PDF

Analytical Study of Geometric Nonlinear Behavior of Cable-stayed Bridges (사장교의 기하학적 비선형 거동의 해석적 연구)

  • Kim, Seungjun;Lee, Kee Sei;Kim, Kyung Sik;Kang, Young Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1A
    • /
    • pp.1-13
    • /
    • 2010
  • This paper presents an investigation on the geometric nonlinear behavior of cable-stayed bridges using geometric nonlinear finite element analysis method. The girder and mast in cable-stayed bridges show the combined axial load and bending moment interaction due to horizontal and vertical forces of inclined cable. So these members are considered as beam-column member. In this study, the nonlinear finite element analysis method is used to resolve the geometric nonlinear behavior of cable-stayed bridges in consideration of beam-column effect, large displacement effect (known as P-${\delta}$ effect) and cable sag effect. To analyze a cable-stayed bridge model, nonlinear 6-degree of freedom frame element and nonlinear 3-degree of freedom equivalent truss element is used. To resolve the geometric nonlinear behavior for various live load cases, the initial shape analysis is performed for considering dead load before live load analysis. Then the geometric nonlinear analysis for each live load case is performed. The deformed shapes of each model, load-displacement curves of each point and load-tensile force curves for each cable are presented for quantitative study of geometric nonlinear behavior of cable-stayed bridges.