• Title/Summary/Keyword: 트랜스폰더

Search Result 75, Processing Time 0.034 seconds

Digital Transponder Technology for the Exploration of Space (우주 탐사를 위한 디지털 트랜스폰더 기술)

  • Won, Young-Jin;Lee, Jin-Ho;Kim, Jin-Hee;Lee, Sang-Ryool
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.80-89
    • /
    • 2010
  • Transponder is the significant equipment for the telemetry and telecommand operation between the ground station and the satellite. Recently, various transponder technology like Compact Standard Transponder(CST), Small User Transponder(SUT) for data relay satellite, Dual Mode TT&C Transponder(DMT) for large user, and Deep Space Transponder(DST) for deep space mission have been developed according to the communication method and user requirements. Especially, the transponder based on the digital technology comes into the spotlight in the satellite communication field. This paper describes the various analog transponder technology and the state-of-art digital transponder technology grafted onto the existing analog transponder technology.

Design of a CMOS RFID transponder IC using a new damping circuit (새로운 감폭 회로를 사용한 CMOS RFID 트랜스폰더 IC 설계)

  • Park, Jong Tae;Yu, Jong Geun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.3
    • /
    • pp.57-57
    • /
    • 2001
  • 본 논문에서는 RFID를 위한 읽기 전용 CMOS 트랜스폰더를 one-chip으로 설계하였다. 리더에서 공급되는 자기장으로부터 트랜스폰더 칩의 전원을 공급하기 위한 전파정류기를 NMOS 트랜지스터를 사용하여 설계하였으며, 데이터 저장 소자로는 64비트의 ROM을 사용하였다. 메모리에 저장되어 있는 ID 코드는 Manchester 코딩되어 front-end 임피던스 변조 방식으로 리더에 전송된다. 임피던스 변조를 위한 감폭회로로는 리더와 트랜스폰더 사이의 거리가 변해도 일정한 감폭율을 갖는 새로운 감폭회로를 사용하였다. 설계된 회로는 0.65㎛ 2-poly, 2-metal CMOS 공정을 사용하여 IC로 제작되었다. 칩 면적은 0.9㎜×0.4㎜이다. 측정 결과 설계된 트랜스폰더 IC는 인식거리 내에서 약 20∼25%의 일정한 감폭율을 보이며, 125㎑의 RF에 대해 3.9kbps의 데이터 전송속도를 보인다. 트랜스폰더 칩의 전력소모는 읽기 모드시 약 100㎼이다. 인식거리는 약 7㎝이다.

Research of Active Transponder application as Ground Control Point in Synthetic Aperture Radar Images (SAR 영상 내에서 능동 트랜스폰더의 GCP 활용 여부에 관한 연구)

  • Jeong, Ho-Ryung;Oh, Tae-Bong;Park, Duk-Jong;Lee, Sun-Gu;Lim, Hyo-Suk
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.164-170
    • /
    • 2012
  • This paper presents that the comparison results of AT (Active Transponder) positions obtained from different measurements: the result of GPS device and evaluated position from the SAR (Synthetic Aperture Radar) image, and active transponders can be useful as GCPs(Ground Control Points) in SAR images. The X-band AT are installed on the wide-and-flat area to improve SCR(signal-to-clutter ration), and activated to represent impulse response function in order to operate as one point target in SAR images. Cosmo-SkyMed operating at X-band frequency are used to provide SAR images of AT. The comparison of AT position is performed by using the result of GPS device field measurement and AT SAR images. ENVI-SARscape S/W is used to evaluate AT position in the SAR images. From the comparison, it is shown that AT are useful as GCPs for SAR images.

Performance Assessment of High-Speed Transponder System for Rail Transport on High-Speed Line (철도교통용 고속 트랜스폰더시스템 고속선 실차 성능평가)

  • Park, Sungsoo;Lee, Jae-Ho;Kim, Seong Jin
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.3
    • /
    • pp.304-313
    • /
    • 2016
  • It is necessary to receive telegrams transmitted by transponder tags installed along the track in order to detect the exact position of a high-speed train. In a high-speed railway environment, telegrams can be corrupted by the electromagnetic interference that comes from onboard electric train power equipment or wayside devices. In this study, we verified the railway environment compatibility of a high-speed transponder system developed as a train position detection system. We installed transponder tags on the Honam high-speed line and measured the number of error-free telegrams received from the transponder tag while the HEMU-430X was running at 268km/h~334km/h. Based on the measurement, we estimated the length of the contact zone formed between the transponder reader and tag. Field test results allow us to estimate how many error-free telegrams can be received when HEMU-430X is at speeds up to 400km/h.

Design and Implementation of S-Band Transponder for Telemetry and Command of Small Satellite (소형위성 관제용 S-대역 트랜스폰더 설계 및 제작)

  • Oh, Seung-Han;Shin, Young-Sup;Yi, Hui-Min;Hong, Sung-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.413-418
    • /
    • 2009
  • The S-band Transponder for telemetry and command of small satellite is designed and fabricated as prototype model using COTS(Commercial Off-The-Shelf) components. QPSK modulator and demodulator of transponder is implemented by using FPGA for system extension. The transponder consists of RF Front End, RF Modulator, RF Demodulator, and MODEM. The measured results of fabricated transponder show BER of less than $1.1{\times}10^{-6}$ at -105 dBm input power.

Implementation of an optical add-drop transponder (10 Gbps 광 add-drop 트랜스폰더의 구현)

  • 김병성;명승일;이정찬;고제수
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.326-329
    • /
    • 2003
  • 본 논문에서는 300 m - 80 km 의 광송수신 기능을 구비한 10 Gbps 광 add-drop 트랜스폰더의 설계 및 구현결과를 기술한다. 10 Gbps 광트랜스폰더는 광전달망 접속기능부와 광종속망 접속기능부와 순방향오류 정정(FEC: forward error correction) 기능부로 이루어 진다. 각 기능부는 독립된 어셈블리로 설계하였으며, 특히 광종속망 접속기능부는 요구되는 전송거리에 따라 어셈블리를 교체할 수 있도록 구현하였다.

  • PDF

Design and Implementation of Carrier Recovery Loop for Satellite Telemetry and Tracking & Command (위성 관제용 반송파 복원부 설계 및 구현)

  • Lee, Jung-Su;Oh, Chi-Wook;Seo, Gyu-Jae;Oh, Seung-Han;Chae, Jang-Soo;Myung, Noh-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.56-62
    • /
    • 2011
  • A Satellite transponder is mounted on the Satellite and performs radio communications with the ground station. A Digital transponder compared to The analog transponder is made easy and accurate performance prediction. Also Modulation Scheme, Data Rate, Loop Bandwidth, Modulation Index and etc. can be changed on orbit, by implementing FPGA can reduce the weight and volume. The core technology of digital transponder is Carrier Recovery loop. Dynamic Range, Frequency Tracking Range, Frequency Tracking Rate and Coherent performance are determined by the performance of the Carrier Recovery loop. In this paper, we proposed the structure of Carrier Recovery loop for the Satellite digital transponder, then tested and verified the structure.

Design of a CMOS RFID Transponder IC Using a New Damping Circuit (새로운 감폭회로를 사용한 CMOS RFID 트랜스폰더 IC 설계)

  • O, Won-Seok;Lee, Sang-Hun;Lee, Gang-Myeong;Park, Jong-Tae;Yu, Jong-Geun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.3
    • /
    • pp.211-219
    • /
    • 2001
  • This paper describes a read-only CMOS transponder IC for RFID applications. A full-wave rectifier implemented using NMOS transistors supplies the transponder with a dc supply voltage using the magnetic field generated from a reader. A 64-bit ROM has been designed for a data memory. Front-end impedance modulation and Manchester coding are used for transmitting the data from the transponder memory to the reader. A new damping circuit which has almost constant damping rate under the variations of the distance between the transponder and the reader has been employed for impedance modulation. The designed circuit has been fabricated using a 0.65${\mu}{\textrm}{m}$2-poly, 2-metal CMOS process. Die area is 0.9mm$\times$0.4mm. Measurement results show that it has a constant damping rate of around 20~25% and a data transmission rate of 3.9kbps at a 125KHz RF carrier. The power required for reading operation is about 100㎼. The measured reading distance is around 7cm.

  • PDF

3단형 과학관측로켓용 탑재 트랜스폰더 시스템 개발

  • Kim, Sung-Wan;Lee, Soo-Jin;Kim, Joo-Nyun;Ma, Keun-Su;Kim, Jun-Kyu
    • Aerospace Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.135-140
    • /
    • 2002
  • The position and trajectory of in-flight rocket are important informations to determine the flight safety of rocket. In general tracking system, radar and transponder are used to acquire position information. Rocket position and trajectory can be determined by using RF communication between ground station and in-flight rocket and antenna position data. Onboard transponder system is composed of RF receiving part, RF transmitting one, decoder and single TX/ RX antenna. Therefore circulator is necessary for minimizing RF signal interference. In this paper, the radar transponder system was developed to track the trajectory and position of KSR-Ⅲ by using radar.

  • PDF

A Digital Carrier Recovery Scheme for Satellite Transponder (디지털방식의 위성 트랜스폰더 반송파 복원 방안 연구)

  • Lee, Yoon-Jong;Choi, Seung-Woon;Kim, Chong-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10A
    • /
    • pp.807-813
    • /
    • 2009
  • A Satellite transponder is the Communication system to process signal with up-link signal recovery, and transmit to ground station through down-link. The orbit flight in the deep space causes high doppler shift in the received signals from the ground station so that the Carrier recovery and fast synchronization system are essential for the transponder system. The conventional analog transponder is employing the system's carrier recovery along with the PLL (Phase Locked Loop) designed for satellite's operation. This paper presents a digital carrier recovery scheme which can provide more reliable and software reconfigurable implementation technique for satellite transponder system without verifying scheme along with transponder designed for short distance or deep space satellite.