Today's Internet is one of the necessaries of our life. Anomalies of the Internet provoke social problems. For that reason, Internet Measurement which studies characteristics on Internet traffic attracts pubic attention. Recently, Traffic Dispersion Graph (TDG), a novel traffic analysis method, was proposed. The TDG is not a statistical analysis method but a graphical visualization method on interactions among network components. In this paper, we propose a new anomaly detection paradigm and its technique using TDG. The existing studies have focused on detecting anomalous packets of flows. On the other hand, we focus on detecting the sources of anomalous traffic. To realize our paradigm, we designed the TDG Clustering method. Through this method, we could classify anomalous hosts infected by various worm viruses. We obtained normal traffic through dropping traffic of the anomalous hosts. Especially, we expect that the TDG clustering method can be applied to real-time anomaly detection because calculations of the method are fast.
The Journal of Korean Institute of Communications and Information Sciences
/
v.33
no.5B
/
pp.304-309
/
2008
This paper propose the traffic anomaly detection scheme based time series model. We apply ARIMA prediction model to this scheme and transform the value of the abnormal symptom into the probability value to maximize the traffic anomaly symptom detection. For this, we have evaluated the abnormal detection performance for the proposed model using total traffic and web traffic included the attack traffic. We will expect to have an great effect if this scheme is included in some network based intrusion detection system.
SIP/RTP-based VoIP services are being popular. Recently, however, VoIP anomaly traffic such as delay, interference and termination of call establishment, and degradation of voice quality has been reported. An attacker could intercept a packet, and obtain user and header information so as to generate an anomaly traffic, because most Korean VoIP applications do not use standard security protocols. In this paper, we propose three VoIP anomaly traffic generation methods for CANCEL;BYE DoS and RTP flooding, and a detection method through flow-based traffic measurement. From our experiments, we showed that 97% of anomaly traffic could be detected in real commercial VoIP networks in Korea.
Kim Jung-Hyun;Ahn Soo-Han;Won You-Jip;Lee Jong-Moon;Lee Eun-Young
Journal of KIISE:Information Networking
/
v.33
no.3
/
pp.201-217
/
2006
In this paper, we collected the physical traces from high speed Internet backbone traffic and analyze the various characteristics of the underlying packet traces. Particularly, our work is focused on analyzing the characteristics of an anomalous traffic. It is found that in our data, the anomalous traffic is caused by UDP session traffic and we determined that it was one of the Denial of Service attacks. In this work, we adopted the unsupervised machine learning algorithm to classify the network flows. We apply the k-means clustering algorithm to train the learner. Via the Cramer-Yon-Misses test, we confirmed that the proposed classification method which is able to detect anomalous traffic within 1 second can accurately predict the class of a flow and can be effectively used in determining the anomalous flows.
Proceedings of the Korea Multimedia Society Conference
/
2003.11b
/
pp.529-532
/
2003
침입 탐지를 위하여 수집되는 네트웍 트래픽은 보통 분석 처리 프로그램으로 입력되기 위해 수치적으로 표현된다. 이러한 데이터로부터 그 가운데 드러나는 경향을 한 눈에 발견하는 데에는 어려움이 있어, 이에 대해 프로토콜, 서비스 및 세션 등을 기준으로 분류하는 처리를 수행한 결과를 바탕으로 세세한 분석과정을 거치는 것이 일반적이다. 네트웍 트래픽 데이터를 도시하여 그 추이를 직관적으로 살필 수 있게 한다면 여러 기준에 따라 분류된 각 트래픽이 가지는 특징을 쉽게 발견할 수 있다. 이러한 트래픽 추이와 특징 파악의 용이함은 트래픽에서 비정상적인 부분을 식별해내는 것을 쉽게 한다 이것은 시스템 관리자가 현재 해당 시스템에 설치되어 작동되고 있는 침입탐지 시스템이나 방화벽 시스템에 대해 독립적으로 편리하게 네트웍 트래픽의 특징을 살피고 이상을 발견할 수 있도록 하며, 경고되거나 차단되지 않은 이상에 대해 신속히 대응할 기회를 준다. 이에 본 연구에서는 네트웍 트래픽들의 특징을 설명할 수 있는 요소들을 조합하여 표현함으로써 네트웍 트래픽의 특징과 이상 파악에 편리한 데이터 도시 방법을 제안한다.
인터넷의 이용이 증가함에 따라 네트워크를 통한 다양한 공격 역시 증가 추세에 있다. 따라서 네트워크 이상징후를 사전에 탐지하고 상황에 따라 유연하게 대처할 수 있도록 하기 위한 연구가 절실하다. 본 연구는 은닉마코프모델을 이용해 트래픽에서 이상징후를 탐지하는 기법을 제안한다. 제안하는 기법은 시계열 예측 기법을 이용해 트래픽에서 징후를 추출한다. 징후추출 과정의 결과를 은닉마코프모델을 활용한 징후판단과정을 통해 네트워크 이상징후인지를 판단하고 결정한다. 일련의 과정을 perl로 구현하고, 실제 공격이 포함된 트래픽을 사용하여 검증한다. 하지만 결과가 확연히 증명되지는 않는데, 이는 학습과정의 부족과 실제에 가까운 트래픽의 사용으로 인해 나타나는 현상으로 연구의 본질을 흐리지는 않는다고 판단된다. 오히려 실제 상황을 가정했을 때 접근이나 적용을 판단함에 관리자의 의견을 반영할 수 있으므로 공격의 탐지와 판단에 유연성을 증대시킬 수 있다. 본 연구는 실시간 네트워크의 상황 파악이나 네트워크에서의 신종 공격 탐지 및 분류에 응용가능할 것으로 기대된다.
Proceedings of the Korean Information Science Society Conference
/
2006.06c
/
pp.313-315
/
2006
최근 인터넷 공격은 웹 서비스 환경에서 다양한 공격 유형들이 인터넷상에서 나타나고 있는 실정이다. 특히 인터넷 웜이나 기타 알려지지 않은 공격이 대중을 이루고 있어 기존의 정보 보호 기술로는 한계에 다다르고 있으며 이미 알려진 공격을 탐지하는 오용탐지 기술로는 적절하게 대응하기 어려워진 상태이다. 또한, 웹 서비스 이용이 확대되고 사용자 요구에 맞게 변화하면서 인터넷상의 노출된 웹 서비스는 공격자들에게 있어 주공격 대상이 되고 있다. 본 논문에서는 웹 기반의 트래픽 유형을 분석하고 각 유형에 따른 이상 징후를 파악할 수 있는 비정상 탐지 모델을 정의하여 정상 트래픽 모델과 비교함으로써 현재 트래픽의 이상 정도를 평가하고 탐지 및 규칙생성, 추가하는 HTTP 트래픽 기반의 비정상행위 탐지 시스템을 설계하고 구현하였다.
DoS/DDoS 공격과 웜 공격으로 대표되는 트래픽 폭주 공격은 그 특성상 사전 차단이 어렵기 때문에 빠르고 정확한 탐지는 공격 탐지 시스템이 갖추어야 할 필수요건이다. 기존의 SNMP MIB 기반 트래픽 폭주공격 탐지 방법은 1 분 이상의 탐지 시간을 요구하였다. 본 논문은 SNMP MIB 객체의 상관 관계를 이용한 빠른 트래픽 폭주 공격 탐지 알고리즘을 제안한다. 또한 빠른 탐지 시간으로 발생되는 시스템의 부하와 탐지 트래픽을 최소화하는 방안도 함께 제시한다. 공격 탐지 방법은 3 단계로 구성되는데, 1 단계에서는 MIB 정보의 갱신주기를 바탕으로 탐지 시점을 결정하고, 2 단계에서는 MIB 정보간의 상관 관계를 이용하여 공격의 징후를 판단하고, 3 단계에서는 프로토콜 별 상세 분석을 통하여 공격 탐지뿐만 아니라 공격 유형까지 판단한다. 따라서 빠르고 정확하게 공격을 탐지할 수 있고, 공격 유형을 분류해 낼 수 있어 신속한 대처가 가능해 질 수있다.
Communications for Statistical Applications and Methods
/
v.18
no.4
/
pp.517-525
/
2011
This paper shows the performance evaluation of a robust estimator based on the GARCH model. We first introduce the method of a robust estimate in the GARCH model and the method of an outlier detection in the GARCH model. The results of the real internet traffic data show the out-performance of the robust estimator over the outlier detection method in the GARCH model. In addition, the method of the robust estimate is less complex than the method of the outlier detection method in the GARCH model.
Proceedings of the Korea Inteligent Information System Society Conference
/
2007.11a
/
pp.514-519
/
2007
컴퓨터 네트워크 모니터링에 의한 보안장비는 많은 트래픽 자료를 분석하여, 이상유무를 판단하고, 대응해야 한다. 기존의 보안장비들은 이미 알려진 패턴에 대한 규칙을 이용하는 오용탐지방법(misuse detection)과 의미를 파악하기 어려운 많은 자료들을 제시하고 있는데 머물고 있다. 보다 나은 보안을 위해서는 정상적인 동작에서 벗어나는 이상징후를 탐지하여 침입을 탐지하는 이상탐지방법(anomaly detection)의 채용이 필요하고, 보안장비에서 제시되는 많은 트래픽 자료들은 보안전문가의 전문적인 분석이 필요하다. 본 연구에서는 데이터마이닝 기법을 이용한 이상탐지방법과 보안전문가의 전문적인 보안지식에 의한 분석, 대응, 관리를 위한 지식처리 기법을 사용할 수 있는 지능형 IPS(intrusion Detection System) 프레임워크를 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.