• Title/Summary/Keyword: 트래픽 이상탐지

Search Result 82, Processing Time 0.033 seconds

An Anomalous Host Detection Technique using Traffic Dispersion Graphs (트래픽 분산 그래프를 이용한 이상 호스트 탐지 기법)

  • Kim, Jung-Hyun;Won, You-Jip;Ahn, Soo-Han
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.2
    • /
    • pp.69-79
    • /
    • 2009
  • Today's Internet is one of the necessaries of our life. Anomalies of the Internet provoke social problems. For that reason, Internet Measurement which studies characteristics on Internet traffic attracts pubic attention. Recently, Traffic Dispersion Graph (TDG), a novel traffic analysis method, was proposed. The TDG is not a statistical analysis method but a graphical visualization method on interactions among network components. In this paper, we propose a new anomaly detection paradigm and its technique using TDG. The existing studies have focused on detecting anomalous packets of flows. On the other hand, we focus on detecting the sources of anomalous traffic. To realize our paradigm, we designed the TDG Clustering method. Through this method, we could classify anomalous hosts infected by various worm viruses. We obtained normal traffic through dropping traffic of the anomalous hosts. Especially, we expect that the TDG clustering method can be applied to real-time anomaly detection because calculations of the method are fast.

A Study on Traffic Anomaly Detection Scheme Based Time Series Model (시계열 모델 기반 트래픽 이상 징후 탐지 기법에 관한 연구)

  • Cho, Kang-Hong;Lee, Do-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.5B
    • /
    • pp.304-309
    • /
    • 2008
  • This paper propose the traffic anomaly detection scheme based time series model. We apply ARIMA prediction model to this scheme and transform the value of the abnormal symptom into the probability value to maximize the traffic anomaly symptom detection. For this, we have evaluated the abnormal detection performance for the proposed model using total traffic and web traffic included the attack traffic. We will expect to have an great effect if this scheme is included in some network based intrusion detection system.

A Flow-based Detection Method for VoIP Anomaly Traffic (VoIP 이상 트래픽의 플로우 기반 탐지 방법)

  • Son, Hyeon-Gu;Lee, Young-Seok
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.4
    • /
    • pp.263-271
    • /
    • 2010
  • SIP/RTP-based VoIP services are being popular. Recently, however, VoIP anomaly traffic such as delay, interference and termination of call establishment, and degradation of voice quality has been reported. An attacker could intercept a packet, and obtain user and header information so as to generate an anomaly traffic, because most Korean VoIP applications do not use standard security protocols. In this paper, we propose three VoIP anomaly traffic generation methods for CANCEL;BYE DoS and RTP flooding, and a detection method through flow-based traffic measurement. From our experiments, we showed that 97% of anomaly traffic could be detected in real commercial VoIP networks in Korea.

Detection of Traffic Anomalities using Mining : An Empirical Approach (마이닝을 이용한 이상트래픽 탐지: 사례 분석을 통한 접근)

  • Kim Jung-Hyun;Ahn Soo-Han;Won You-Jip;Lee Jong-Moon;Lee Eun-Young
    • Journal of KIISE:Information Networking
    • /
    • v.33 no.3
    • /
    • pp.201-217
    • /
    • 2006
  • In this paper, we collected the physical traces from high speed Internet backbone traffic and analyze the various characteristics of the underlying packet traces. Particularly, our work is focused on analyzing the characteristics of an anomalous traffic. It is found that in our data, the anomalous traffic is caused by UDP session traffic and we determined that it was one of the Denial of Service attacks. In this work, we adopted the unsupervised machine learning algorithm to classify the network flows. We apply the k-means clustering algorithm to train the learner. Via the Cramer-Yon-Misses test, we confirmed that the proposed classification method which is able to detect anomalous traffic within 1 second can accurately predict the class of a flow and can be effectively used in determining the anomalous flows.

Graphical Representation of Network Traffic Data for Intrusion Detection (침입탐지를 위한 네트웍 트래픽 데이터 도시)

  • 곽미라;조동섭
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.11b
    • /
    • pp.529-532
    • /
    • 2003
  • 침입 탐지를 위하여 수집되는 네트웍 트래픽은 보통 분석 처리 프로그램으로 입력되기 위해 수치적으로 표현된다. 이러한 데이터로부터 그 가운데 드러나는 경향을 한 눈에 발견하는 데에는 어려움이 있어, 이에 대해 프로토콜, 서비스 및 세션 등을 기준으로 분류하는 처리를 수행한 결과를 바탕으로 세세한 분석과정을 거치는 것이 일반적이다. 네트웍 트래픽 데이터를 도시하여 그 추이를 직관적으로 살필 수 있게 한다면 여러 기준에 따라 분류된 각 트래픽이 가지는 특징을 쉽게 발견할 수 있다. 이러한 트래픽 추이와 특징 파악의 용이함은 트래픽에서 비정상적인 부분을 식별해내는 것을 쉽게 한다 이것은 시스템 관리자가 현재 해당 시스템에 설치되어 작동되고 있는 침입탐지 시스템이나 방화벽 시스템에 대해 독립적으로 편리하게 네트웍 트래픽의 특징을 살피고 이상을 발견할 수 있도록 하며, 경고되거나 차단되지 않은 이상에 대해 신속히 대응할 기회를 준다. 이에 본 연구에서는 네트웍 트래픽들의 특징을 설명할 수 있는 요소들을 조합하여 표현함으로써 네트웍 트래픽의 특징과 이상 파악에 편리한 데이터 도시 방법을 제안한다.

  • PDF

An Anomaly Detection based on Probabilistic Behavior of Hidden Markov Models (은닉마코프모델을 이용한 이상징후 탐지 기법)

  • Lee, Eun-Young;Han, Chan-Kyu;Choi, Hyoung-Kee
    • Annual Conference of KIPS
    • /
    • 2008.05a
    • /
    • pp.1139-1142
    • /
    • 2008
  • 인터넷의 이용이 증가함에 따라 네트워크를 통한 다양한 공격 역시 증가 추세에 있다. 따라서 네트워크 이상징후를 사전에 탐지하고 상황에 따라 유연하게 대처할 수 있도록 하기 위한 연구가 절실하다. 본 연구는 은닉마코프모델을 이용해 트래픽에서 이상징후를 탐지하는 기법을 제안한다. 제안하는 기법은 시계열 예측 기법을 이용해 트래픽에서 징후를 추출한다. 징후추출 과정의 결과를 은닉마코프모델을 활용한 징후판단과정을 통해 네트워크 이상징후인지를 판단하고 결정한다. 일련의 과정을 perl로 구현하고, 실제 공격이 포함된 트래픽을 사용하여 검증한다. 하지만 결과가 확연히 증명되지는 않는데, 이는 학습과정의 부족과 실제에 가까운 트래픽의 사용으로 인해 나타나는 현상으로 연구의 본질을 흐리지는 않는다고 판단된다. 오히려 실제 상황을 가정했을 때 접근이나 적용을 판단함에 관리자의 의견을 반영할 수 있으므로 공격의 탐지와 판단에 유연성을 증대시킬 수 있다. 본 연구는 실시간 네트워크의 상황 파악이나 네트워크에서의 신종 공격 탐지 및 분류에 응용가능할 것으로 기대된다.

HTTP Traffic Based Anomaly Detection System (HTTP 트래픽 기반의 비정상행위 탐지 시스템)

  • Kim Hyo-Nam;Jang Sung-Min;Won Yu-Hun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06c
    • /
    • pp.313-315
    • /
    • 2006
  • 최근 인터넷 공격은 웹 서비스 환경에서 다양한 공격 유형들이 인터넷상에서 나타나고 있는 실정이다. 특히 인터넷 웜이나 기타 알려지지 않은 공격이 대중을 이루고 있어 기존의 정보 보호 기술로는 한계에 다다르고 있으며 이미 알려진 공격을 탐지하는 오용탐지 기술로는 적절하게 대응하기 어려워진 상태이다. 또한, 웹 서비스 이용이 확대되고 사용자 요구에 맞게 변화하면서 인터넷상의 노출된 웹 서비스는 공격자들에게 있어 주공격 대상이 되고 있다. 본 논문에서는 웹 기반의 트래픽 유형을 분석하고 각 유형에 따른 이상 징후를 파악할 수 있는 비정상 탐지 모델을 정의하여 정상 트래픽 모델과 비교함으로써 현재 트래픽의 이상 정도를 평가하고 탐지 및 규칙생성, 추가하는 HTTP 트래픽 기반의 비정상행위 탐지 시스템을 설계하고 구현하였다.

  • PDF

Traffic Flooding Attack Detection using SNMP MIB (SNMP MIB 기반 트래픽 폭주공격 탐지)

  • Park, Jun-Sang;Park, Dai-Hee;Kim, Myung-Sup
    • Annual Conference of KIPS
    • /
    • 2008.05a
    • /
    • pp.935-938
    • /
    • 2008
  • DoS/DDoS 공격과 웜 공격으로 대표되는 트래픽 폭주 공격은 그 특성상 사전 차단이 어렵기 때문에 빠르고 정확한 탐지는 공격 탐지 시스템이 갖추어야 할 필수요건이다. 기존의 SNMP MIB 기반 트래픽 폭주공격 탐지 방법은 1 분 이상의 탐지 시간을 요구하였다. 본 논문은 SNMP MIB 객체의 상관 관계를 이용한 빠른 트래픽 폭주 공격 탐지 알고리즘을 제안한다. 또한 빠른 탐지 시간으로 발생되는 시스템의 부하와 탐지 트래픽을 최소화하는 방안도 함께 제시한다. 공격 탐지 방법은 3 단계로 구성되는데, 1 단계에서는 MIB 정보의 갱신주기를 바탕으로 탐지 시점을 결정하고, 2 단계에서는 MIB 정보간의 상관 관계를 이용하여 공격의 징후를 판단하고, 3 단계에서는 프로토콜 별 상세 분석을 통하여 공격 탐지뿐만 아니라 공격 유형까지 판단한다. 따라서 빠르고 정확하게 공격을 탐지할 수 있고, 공격 유형을 분류해 낼 수 있어 신속한 대처가 가능해 질 수있다.

A Comparative Study of a Robust Estimate Method for Abnormal Traffic Detection (이상 트래픽 탐지를 위한 로버스트 추정 방법 비교 연구)

  • Jung, Jae-Yoon;Kim, Sahm
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.4
    • /
    • pp.517-525
    • /
    • 2011
  • This paper shows the performance evaluation of a robust estimator based on the GARCH model. We first introduce the method of a robust estimate in the GARCH model and the method of an outlier detection in the GARCH model. The results of the real internet traffic data show the out-performance of the robust estimator over the outlier detection method in the GARCH model. In addition, the method of the robust estimate is less complex than the method of the outlier detection method in the GARCH model.

An Intelligent IPS Framework (지능형 IPS 프레임워크)

  • Lee, Dong-Min;Kim, Gwang-Baek;Park, Chung-Sik;Kim, Seong-Su;Han, Seung-Cheol
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.11a
    • /
    • pp.514-519
    • /
    • 2007
  • 컴퓨터 네트워크 모니터링에 의한 보안장비는 많은 트래픽 자료를 분석하여, 이상유무를 판단하고, 대응해야 한다. 기존의 보안장비들은 이미 알려진 패턴에 대한 규칙을 이용하는 오용탐지방법(misuse detection)과 의미를 파악하기 어려운 많은 자료들을 제시하고 있는데 머물고 있다. 보다 나은 보안을 위해서는 정상적인 동작에서 벗어나는 이상징후를 탐지하여 침입을 탐지하는 이상탐지방법(anomaly detection)의 채용이 필요하고, 보안장비에서 제시되는 많은 트래픽 자료들은 보안전문가의 전문적인 분석이 필요하다. 본 연구에서는 데이터마이닝 기법을 이용한 이상탐지방법과 보안전문가의 전문적인 보안지식에 의한 분석, 대응, 관리를 위한 지식처리 기법을 사용할 수 있는 지능형 IPS(intrusion Detection System) 프레임워크를 제안한다.

  • PDF