• Title/Summary/Keyword: 트라이볼러지

Search Result 13, Processing Time 0.022 seconds

Comparative Analysis of Nanotribological Characterization of Fluorocarbon Thin Film by PECVD and ICP (PECVD와 ICP에 의해 증착된 불화유기박막의 나노트라이볼러지 특성 비교분실)

  • 김태곤;이수연;박진구;신형재
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.11a
    • /
    • pp.226-229
    • /
    • 2001
  • 현재 초소형 정밀기계(MEMS;Microelectromechanical System) 소자의 가장 큰 문제점으로 대두되고 있는 점착현상을 방지하기 위하여 불화유기박막을 증착하였다. Octafluorocyclobutane(C$_4$F$_{8}$)을 소스가스를 PECVD (Plasma Enhanced CVD)와 ICP (Inductively Coupled Plasma)를 이용하여 증착하였다. 여기에 Ar을 첨가하여 플라즈마의 반응성을 높여주었다. 형성된 불화유기박막의 나노트라이볼러지 특성을 살펴보기 위하여 AFM을 통하여 증착시킨 시편의 topography를 살펴보았다. 그리고 박막의 antiadhesion의 정도를 살펴보기 위하여 cantilever와 박막의 표면 사이에 존재하는 interaction force를 측정 하였고 AFM의 force curve mode를 이용하였다 PECVB를 이용하여 증착된 박막은 ICP를 이용한 박막보다 균일하지 못한 박막을 보였으며 attractive force가 강한 것으로 사료된다.

  • PDF

Variations in Tribology Factors of SM45C by UNSM Modification (SM45C재의 UNSM 처리에 의한 트라이볼러지 특성 변화)

  • Shim, Hyun-Bo;Suh, Chang-Min;Suh, Min-Soo;Amanov, Auezhan;Pyun, Young-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.492-501
    • /
    • 2018
  • The following results were obtained from a series of studies to accumulate data to reduce the coefficient of friction for press dies by performing tribological tests before and after the UNSM treatment of SM45C. The UNSM-treated material had a nano-size surface texture, high surface hardness, and large and deep compressive residual stress formation. Even when the load was doubled, the small amount of abrasion, small weight of the abrasion, and width and depth of the abrasion did not increase as much as those for untreated materials. When loads of 5 N, 7.5 N, and 10 N were applied to the untreated material of SM45C, the coefficient of friction was approximately 0.76-0.78. With the large specimen, a value of 0.72-0.78 was maintained at a load of 50 N despite the differences in the size of the wear specimen and working load. Tribological tests of large specimens of SM45C treated with UNSM under tribological conditions of 100 N and 50 N showed that the frictional coefficient and time constant stably converged between 0.7 and 0.8. The friction coefficients of the small specimens treated with UNSM showed values between 0.78 and 0.75 under 5 N, 7.5 N, and 10 N. The friction coefficients of the SM45C treated with UNSM were comparable to each other.

Variations in Tribological Characteristics of SM45C by PVD Coating and Thin Films (SM45C재의 PVD코팅과 필름에 의한 트라이볼러지 특성)

  • Shim, Hyun-Bo;Suh, Chang-Min;Kim, Jong-Hyoung;Suh, Min-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.502-510
    • /
    • 2018
  • In order to accumulate data to lower the friction coefficient of a press mold, tribological tests were performed before and after coating SM45C with a PVC/PO film and plasma coating (CrN, concept). The ultrasonic nanocrystal surface modification (UNSM)-treated material had a nano-size surface texture, high surface hardness, and large and deep compressive residual stress formation. Even when the load was doubled, the small amount of abrasion, small weight of the abrasion, and width and depth of the abrasion did not increase as much as those of untreated materials. A comparison of the weight change before and after the tribological test with the CrN and the concept coating material and that of the untreated material showed that the wear loss of the concept coating material and P-UNSM treated material (that is, the UNSM treated material treated with the concept coating) showed a tendency to decrease by approximately 55-75%. Concept 100N had a lower friction coefficient of about 0.6, and P-UNSM-30-100N showed almost the same curve as concept 100N and had a low coefficient of friction of about 0.6. The concept multilayer coating had a thickness of $5.32{\mu}m$. In the beginning, the coefficient of friction decreased because of the plasma coating, but it started to increase from about 250-300 s. After about 350 s, the coefficient of friction tended to approach the friction coefficient of the SM45C base metal. The SGV-280F film-attached test specimen was slightly pushed back and forth, but the SM45C base material was not exposed due to abrasion. The friction coefficient was 0.22, which was the lowest, and the tribological property was the best in this study.

Research into Transmission-Tribology Design (전동트라이볼러지 설계에 관한 연구)

  • Wei, Yun-long;Lyu, Sung-ki;Lu, Long;Jung, Kwang-jo;Lim, Ju-suck;Cao, Xing-jin
    • Tribology and Lubricants
    • /
    • v.19 no.4
    • /
    • pp.217-222
    • /
    • 2003
  • We propose a new concept of transmission-tribology design based on the investigation of development and existing problem of the gear drive and tribology. The content of transmission-tribology and transmission-tribology design is probed. Some effective methods of transmission-tribology design is probed. Some effective methods of transmission-tribology design are put forward. Partial achievements in this research are introduced tersely.

Adhesive, Friction, and Deformation Behaviors of Pig Skin under Various Exposure Times to Air (돼지피부의 공기노출 시간에 따른 응착, 마찰 및 변형거동)

  • Shin, Hyunduk;Ahn, Hyo-Sok
    • Tribology and Lubricants
    • /
    • v.30 no.1
    • /
    • pp.36-45
    • /
    • 2014
  • Understanding steel/skin contact phenomena is important for the study of object manipulation in robotics and has been a topic of great interest. In this study, pig skin was taken as a surrogate model for human skin, and its adhesive, friction, and deformation behaviors were measured under various exposure times to air. Indentation, friction, and scratch tests were performed at $25^{\circ}C$ and 45% relative humidity. The influences of adhesion and deformation on the coefficient of friction were characterized; the pig skin was found to be sensitive to the sliding velocity and normal load under the controlled experimental conditions.

Nanotribological Behavior of Cu Oxide and Silicon Tip (Cu Oxide와 Silicon Tip 사이의 나노트라이볼러지 작용)

  • Kim, Tae-Gon;Kim, In-Kwon;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.364-365
    • /
    • 2005
  • This paper report nanotribological behavior between Si tip and Cu wafer surfaces which was treated various concentration of $H_2O_2$. This experimental approach has proven atomic level insight into Cu CMP. It has been used to study interfacial friction and adhesion force between Si tip and Cu wafer surfaces in air by atomic force microscopy (AFM). Adhesion force of Cu surfaces which was pre-cleaned in diluted HF solution was lager than Cu oxide surfaces. Adhesion force of Cu oxide surface was saturated around 7 nN. Slope of normal force vs lateral signal was increased as increasing concentration of $H_2O_2$ and it was saturated around 24. Friction force of Cu oxide was lager than Cu.

  • PDF

Mode I and Mode II Stress Intensity Factors for a Surface Cracked in TiN/Steel Under Hertzian Rolling Contact (Hertzian 접촉하중시 TiN/Steel의 표면균열에 대한 모드 I과 모드 II 응력확대계수)

  • Kim, Byeong-Su;Kim, Wi-Dae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1163-1172
    • /
    • 2001
  • The two dimensional problem of a layered tribological system(TiN/Steel) containing a vertical surface breaking crack and subject to rolling contact is considered in this study. Using finite elements and stress extrapolation method, a series of preliminary models are developed. Preliminary results indicate that the extrapolation technique is valid to determine Modes I and II stress intensity factors for cracks. In the case of TiN/Steel medium, KI and KII were determined for variations in crack length, layer thickness, and load location. The results show that KII reaches maximum values when the contact is adjacent to the crack where Mode I stresses are compressive. KII values decrease with decreased crack length and significantly decrease for reduced layer thickness.

Research on Tribology Characteristics Using DLC Thin Film and Lithography Processes (DLC 박막 및 리소그래피 공정을 적용한 트라이볼러지 특성 연구)

  • T.H. Jang;J.H. Park;T.G. Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.6
    • /
    • pp.412-421
    • /
    • 2023
  • As the demand for mechatronic systems and high performance increases in the machinery industry, the importance of improving friction characteristics is emphasized. During relative movement of objects, friction and wear occur on two surfaces in contact, and various methods are being designed to increase the lifespan and energy efficiency of machines. The energy increase effect using lubricants is a well-known method. In this study, a micro-sized rectangular grid pattern was produced by applying a precise micro-pattern photo lithography process. Rectangular grid patterns of the same shape and friction behavior according to the size of the pattern were produced in convex and concave shapes, and the tribological characteristics of each were analyzed.

A New Design of AFM Probe for Nanotribological Characterizations Measurement of Human Hair (모발의 나노 트라이볼러지 특성해명을 위한 원자현미경(Atomic Force Microscopy) 프로브의 개발)

  • Kweon, Hyun Kyu;Gao, Yan Wei
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.4
    • /
    • pp.1-7
    • /
    • 2015
  • People are always pursuing the aesthetic feeling relentlessly. But some people have such problems with their hairs like alopecia, cancer chemotherapy, burns, and scalp injury. So the synthetic hair has played a very important role to make up for these deficiencies. But long term use can lead to adverse reactions or uncomfortable feeling. This is primarily caused by its properties differ with human hair. In particular, nanotribological characterizations (roughness, friction force and adhesive force) of synthetic hair surface are dissatisfy with the needs of normal hairs. This paper presents the experiments on nanotribological characterizations measurements of human hairs (coloring hair, permed hair and common hair) in shampooing condition or without shampooing condition. Using atomic force microscopy (AFM) to find out a range of synthetic hair nanotribological characterizations which can correspond with natural hair. The measurements of nanotribological characterizations focus on surface roughness, friction force and adhesive force, and a new design of AFM probe was used for measuring the nanotribological characterizations.