• Title/Summary/Keyword: 튜브 교체

Search Result 22, Processing Time 0.022 seconds

The high temperature oxidation behavior of X20CrMoV12.1 high-chromium steel (X20CrMoV12.1 고크롬강의 고온산화거동)

  • 정진성;김두수;김범수;김의현;하정수
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.46-46
    • /
    • 2003
  • 고크롬강은 산업용 발전설비의 효율적인 열교환을 위해 수천개의 튜브로 구성된 보일러에 적용되고 있다. 이러한 보일러 튜브는 고온에 노출되어 있으며, 튜브 내면에는 고온의 증기가 고압으로 존재하고 있다. 따라서 보일러 튜브는 장기간 고온의 환경에서 사용되기 때문에 고온강도와 고온내산화 및 내부식 특성이 요구된다. 보일러 튜브의 열화는 이세조직 변화에 따른 고온강도의 저하를 재료내부의 열화와 고온산화 및 부식 등 외부환경에 의 한 열화로 크게 두 가지로 대별된다. 이러한 보일러 튜브의 수명평가는 튜브의 수명을 미리 예측하여 적절한 시점에 교체함으로서 운전 중 손상에 따른 발전정지 등을 방지하여 막대한 비용을 절감할 수 있기 때문에 현장에서는 중요한 의미를 갖는다. 본 연구에서는 보일러 튜브의 여러 가지 수명평가 방법 중 현재 산업용 발전설비의 보일러에 적용되고 있는 X-20 고크롬강의 고온산화 거동을 조사하여 향후 보일러 튜브의 수명평가 방법 중 산화스케일을 이용한 방법에 활용하는데 있어 기초 자료로 이용하고자 한다.

  • PDF

Heat Transfer Study to Replace a Tube Bundle of Moisture Separator Reheater at Nuclear Power Plant (원전 습분분리재열기 튜브 번들 교체를 위한 열전달 고찰)

  • Choi, You-Sung;Choi, Kwang-Hee;Lee, Sang-Guk
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.6 no.1
    • /
    • pp.65-71
    • /
    • 2010
  • The plugging rate of reheater tubes of Wolsung unit 1 nuclear power plant has been increased by corrosion and erosion since 1990. As the dimensions of the new first stage reheater bundle tubes which were supplied by Hanjung company to replace were different from old one, numerical calculations are carried out for flow and heat transfer in the reheater bundle tubes of the N.P.P. Numerical calculations consists of thermal performance, drain line pressure drop, flow change by pressure drop of line, stress analysis of finned tubes and analysis of flow induced vibration. Computational analysis using heat transfer research institute program is adopted to verify the results of the numerical calculations. It contains the evalution of performance in the system with view to location of the new reheater bundle and it shows the differences between the numerical calculation results and heat transfer research institute program output.

  • PDF

A Study on Ceramic Arc-tube Metal Halide Lamp for 150W Class (150W급 세라믹 아크튜브에 관한 연구)

  • Rho, Jae-Yeop;Hwang, Myung-Keun;Shin, Sang-Wuk;Lee, Se-Hyun;Yi, Chin-Woo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.121-125
    • /
    • 2008
  • 최근들어 메탈핼라이드램프의 아크튜브에 사용되던 석영관을 내열성 및 내식성이 우수한 alumina ceramic 재질의 아크튜브에 교체한 세라믹 메탈핼라이드램프가 개발되었다. 이러한 세라믹 메탈핼라이드램프는 기존 석영관 메탈핼라이드램프에 비해 고효율, 고연색성 및 장수명 등 우수한 특성을 가지고 있어 램프의 compact화를 통해 150W이하의 옥내 상업용 조명시설에 급속한 보급이 이루어지고 있으며 국내에서도 이러한 세라믹 메탈핼라이드램프 개발을 위한 연구가 진행 중이다. 이에 본 논문에서는 국내 세라믹 메탈핼라이트램프(Ceramic Metal Halide lamp)의 개발에 필요한 국외 선진 제품에 대한 특성 DB구축을 위하여 150W급 세라믹 메탈핼라이드램프의 아크튜브 구조 및 치수를 측정하고 weibull++6을 이용한 성능열화데이터 분석을 통해 세라믹 메탈핼라이드램프의 수명을 예측해 보았다.

  • PDF

The Importance of Monitoring Wells Maintenance in Improving Groundwater Quality (지하수 관측정의 시설개선에 따른 수질변화와 유지관리에 대한 연구)

  • Kim, Jeong-Woo;Seo, Yongkyo;Kim, Rak-Hyeon;Cheon, Jeong-Yong
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.283-295
    • /
    • 2014
  • Groundwater monitoring wells are important to maintain their performance for long term monitoring. The monitoring wells with extensive internal incrustation by clay adsorption were selected for this study. The performance of these monitoring wells was improved by pump washing, tube replacements for dedicated samplers, and well surging. After each improvement, the Mg, Mn, and Zn concentrations were increased. The results show that under these conditions, the monitoring wells must be carefully inspected at least once a year. Even in the case of no abnormal phenomenon like as internal incrustation, the monitoring wells need to be serviced at least once every four to five years to guarantee that they are effectively monitoring groundwater quality.

Analysis of High-Temperature Corrosion of Heat Exchanger Tubes in Biomass Circulating Fluidized Bed Boiler (바이오매스 순환유동층 보일러의 열교환기 고온 부식 특성)

  • Yujin Choi;Dal-hee Bae;Doyeon Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.419-425
    • /
    • 2023
  • This paper presents the research results of analyzing the high-temperature corrosion characteristics of three currently commercialized heat exchanger tube materials under actual operating conditions of a biomass power plant. In order to precisely analyze the high-temperature corrosion characteristics of these materials, a high-temperature corrosion evaluation device was installed in the power plant equipment, which allows for adjusting the surface temperature of the heat exchanger tubes. Experiments were conducted for approximately 300 hours under various temperature and operating conditions. In this study, the commercialized heat exchanger tube materials used were SA213T12, SA213T22, and SA213T91 alloys. In order to objectively analyze the high-temperature corrosion characteristics of each material, an international standard-based process to remove corrosion products was applied to obtain the weight change of the specimens, and the average thickness loss and corrosion rate were derived. Thus, the high-temperature corrosion results for each condition were quantitatively compared and analyzed. In addition, in order to increase the reliability of the high-temperature corrosion evaluation method introduced in this study, the surface and cross-sectional corrosion of the specimens were confirmed by using scanning electron microscopy and energy-dispersive X-ray analysis. Based on these analysis results, it was found that the corrosion resistance of the commercial heat exchanger materials increases as the content of chrome and nickel in the composition increases. Additionally, it was found that the corrosion phenomenon is rapidly accelerated as the surface temperature increases. Finally, the replacement period (lifetime) of the heat exchanger tubes under each condition could be inferred through this study.

Shell and Tube Heat Exchanger Performance Estimation by Changing Shell-side Fluid Characteristics (쉘-튜브 열교환기에서의 쉘쪽 유체의 특성에 따른 열교환기 성능 변화 예측 사례)

  • Baek, Seungwhan;Jung, Youngsuk;Cho, Kiejoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.2
    • /
    • pp.27-37
    • /
    • 2019
  • The shell and tube heat exchangers installed in the propulsion system test complex (PSTC) at the Naro Space Center heats cryogenic helium to 500 K with a heat transfer oil. As the experimental helium outlet temperature was lower than expected (less than 100 K), the boundary layer effect of the heat transfer oil is predicted to be the cause of the performance deterioration. A computational fluid dynamics (CFD) analysis was performed to verify where the boundary layer effect exists; however, the boundary layer effect has no significant impact on the performance of the heat exchanger. An alternative method to improve the performance of the heat exchanger by changing the heat transfer oil has been discussed in this paper. The low viscosity and high thermal conductivity at high temperature (~500 K) of heat transfer oil at the shell-side are required to improve the thermal performance of the heat exchanger. The experimental performance of the heat exchanger, used to exchange heat between the cryogenic helium and hot heat transfer oil at the PSTC are summarized in this paper.