• Title/Summary/Keyword: 투수 계수

Search Result 906, Processing Time 0.022 seconds

Proposal for the Estimation Model of Coefficient of Permeability of Soil Layer using Linear Regression Analysis (단순회귀분석에 의한 토층의 투수계수산정모델 제안)

  • Lee, Moon-Se;Ryu, Je-Cheon;Lim, Heui-Dae;Park, Joo-Whan;Kim, Kyeong-Su
    • The Journal of Engineering Geology
    • /
    • v.18 no.1
    • /
    • pp.27-36
    • /
    • 2008
  • To derive easily the coefficient of permeability from several other soil properties, the estimation model of coefficient of permeability was proposed using linear regression analysis. The coefficient of permeability is one of the major factors to evaluate the soil characteristics. The study area is located in Kangwon-do Pyeongchang-gun Jinbu-Myeon. Soil samples of 45 spots were taken from the study area and various soil tests were carried out in laboratory. After selecting the soil factor influenced by the coefficient of permeability through the correlation analysis, the estimation model of coefficient of permeability was developed using the linear regression analysis between the selected soil factor and the coefficient of permeability from permeability test. Also, the estimation model of coefficient of permeability was compared with the results from permeability test and empirical equation, and the suitability of proposed model was proved. As the result of correlation analysis between various soil factors and the coefficient of permeability using SPSS(statistical package for the social sciences), the largest influence factor of coefficient of permeability were the effective grain size, porosity and dry unit weight. The coefficient of permeability calculated from the proposed model was similar to that resulted from permeability test. Therefore, the proposed model can be used in case of estimating the coefficient of permeability at the same soil condition like study area.

양수시험분석에 의한 제주도 화산암 대수층의 수리적 특성

  • 우윤정;함세영;정재열;이상선;장차연;박윤석;김봉상
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.292-295
    • /
    • 2003
  • 제주도 전역의 88개소에서 측정한 양수시험자료를 분석하여 투수량계수를 산출하였으며, 투수량계수계수와 비양수량의 관계식을 산출하였다. 제주도의 화산암 대수층은 대체로 투수성이 크고 대수층의 상.하부로부터 상당량의 지하수가 공급되므로 누수피압대수층이 적합한 모델로 판단된다. 투수량계수는 0.405~1038.52m$^2$/d로서 넓은 범위에 걸쳐서 분포하며 이는 제주도 화산 암의 투수성이 지역에 따라 다양하다는 것을 의미한다. 비양수량(Q/s)-투수량계수(T) 관계식은 T = 0.582(Q/s)$^{0.974}$ 로 계산되었으며, 이 관계식은 지역적으로 투수량계수 산출이 불가능할 경우에 비양수량만으로 투수량계수를 추정하는데 이용될 수 있다.

  • PDF

Evaluation of Permeability Characteristics of Yangsan Clay by Laboratory Tests (실내시험을 통한 양산점토의 투수특성 평가)

  • 김동휘;김진원;임형덕;김대규;이우진
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.249-257
    • /
    • 2001
  • 본 논문에서는 경남 양산지역의 퇴적층에서 채취한 불교란 시료를 이용하여 표준압밀시험($IL_{CON}$)과 일정변형률(CRS, Constant Rates of Strain) 압밀시험을 수행한 후 각각의 시험결과를 분석하여 양산점토의 투수특성을 고찰하였다. 이를 위하여 투수계수와 간극비의 관계를 Kozeny(1927)와 Carman(1956) 이후 제안된 많은 연구결과와 비교, 검토하였으며, 시료를 연직방향으로 성형하여 CRS 시험을 수행한 후 횡방향투수계수를 산정하여 양산점토의 투수계수의 이방성을 살펴보았다. CRS시험 결과, 직접적으로 정상류를 발생시켜 누수계수를 측정하는 Rowe cell 시험에 비하여 상대적으로 투수계수의 이방성이 과소평가되는 경향을 보였다. 또한 현장 투수계수에 영향을 미치는 요소들을 살펴보고, 깊이에 따른 투수계수를 고찰하였다.다.

  • PDF

Relationship between Hydraulic Conductivity and Electrical Conductivity in Sands (사질토의 투수계수와 전기전도도 간의 상관관계)

  • Kim, Jinwook;Choo, Hyunwook;Lee, Changho;Lee, Woojin
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.6
    • /
    • pp.45-58
    • /
    • 2015
  • The aim of this study is to suggest a semi-empirical equation for estimating the hydraulic conductivity of sands using geoelectrical measurements technique. The suggested formula is based on the original Kozeny-Carman equation; therefore varying factors affecting the Kozeny-Carman equation were selected as the testing variables, and six different sands with varying particle sizes and particle shapes were used as the testing materials in this study. To measure both hydraulic and electrical conductivities, a series of constant head permeameter tests equipped with the four electrodes conductivity probe was conducted. Test results reveal that the effects of both pore water conductivity and flow rate in relation between hydraulic conductivity and formation factor (=pore water conductivity / measused conductivity of soil) of tested materials are negligible. However, because the variations of hydraulic conductivity of the tested sands according to particle sizes are significant, the estimated hydraulic conductivity using the formation factor varies with particle sizes. The overall comparison between the measured hydraulic conductivity and the estimated hydraulic conductivity using the suggested formula shows a good agreement, and the variation of hydraulic conductivity with varying Archie's m exponents is smaller compared with varying porosities.

Estimation of Hydraulic Conductivity Using Piezocone Penetration Test (피에조콘 관입 시험을 이용한 투수계수 산정기법 연구)

  • 송정락
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.2
    • /
    • pp.31-39
    • /
    • 2001
  • 본 연구에서는 수정 Cam Clay 모델과 혼합체 커플링 이론(coupled theory of mixtures)을 이용하여 피에조콘 관입시험을 해석하여 지반의 투수계수와 과잉간극수압의 정량적 관계를 고찰하였다. 본 연구의 이론적 해석 결과는 시험결과들과 비교하였으며 그 결과 피에조콘 관립 시험시 관측된 과잉간극수압은 지반의 투수계수가 $10^{-9}$m/sec에서 $10^{-6}$m/sec의 범위에서는 투수계수에 따라 피에조콘 관립 시험시 관측된 과잉간극수압이 현저하게 변하는 것으로 나타나 피에조콘 관입시험시 관측한 과잉간극수압을 이용하여 지반의 투수계수를 결정할 수 있음을 알 수 있었다. 또한 지반의 투수계수가 $10^{-9}$m/sec 이하에서는 지반이 거의 완전 비배수 상태에 가까운 거동을 나타내면, 투수계수가 $10^{-6}$m/sec 이상에서는 거의 완전 배수상태에 가까운 거동을 하는 것으로 나타났다.으로 나타났다.

  • PDF

Analytical Modeling for Microstructural Permeability Coefficient of (Non)Carbonated Concrete (탄산화 및 비탄산화된 콘크리트의 투수계수의 해석 기법 개발)

  • Yoon, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.255-264
    • /
    • 2009
  • Permeability coefficient of concrete is a substaintial key parameter for understanding the durability performance of concrete and its microstructural densification. Many researches for the issue have been accomplished, however, it is very rare to deal with the theoretical study on permeability coefficient in connection with carbonation of concrete and the the effect of volumetric fraction of cement paste or aggregate on the permeability coefficient. The majority of these researches have not dealt with this issue combined with carbonation of concrete, although carbonation can significantly impact on the permeability coefficient of concrete. The purpose of this study is to establish a fundamental approach to compute the permeability coefficeint of (non)carbonated concrete. When simulating a microstructural characteristics as a starting point for deriving a model for the permeability coefficient by the numerical simulation program for cementitious materials, HYMOSTRUC, a more realistic formulation can be achieved. For several compositions of cement pastes, the permeability coefficient was calculated with the analytical formulation, followed by a microstructure-based model. Emphasis was on the microstructural changes and its effective change of the permeability coefficient of carbonated concrete. For carbonated concrete, reduced porosity was calculated and this was used for calculating the permeability coefficeint. The computational result was compared with experimental outcome.

Unsaturated Permeability Characteristics of Silty Sand on the Nak-dong River (낙동강 실트질 모래에 대한 불포화 투수특성)

  • Kim, Young-Su;Shin, Ji-Seop
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1C
    • /
    • pp.7-16
    • /
    • 2012
  • In this paper, using the principle of Static Measurement Methods suggested by Huang (1998), a new experimental device has been made and used in order to calculate the unsaturated permeability of Nak-dong river sand with silt which is an important basic property in the unsaturated soil. This device was designed to measure changes of the unsaturated permeability according to the increase of matric suction. The value of the unsaturated permeability obtained in testing and that obtained using the empirical permeability functional formula were compared and analyzed. As a result, the value of the unsaturated permeability tends to be decreased according to the increase of relative density, silt content and matric suction. This tendency shows it is very closely related to the change of moisture content and void ratio. The empirical permeability functional formula presented by Frelund & Xing (1995) was regarded as the most appropriate model to represent the unsaturated permeability of Nak-dong River silty sand.

Subsurface Characterization using the Simultaneous Search based Pilot Point Method (SSBM) in Various Data Applications (지하수 흐름특성 분석을 위한 동시 검색기반 파일럿 포인트 방법 적용 - 다양한 데이터 활용 기반)

  • Jung, Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.5
    • /
    • pp.579-586
    • /
    • 2019
  • Pilot Point Method (PPM) is one of the popular methods to search hydraulic conductivities in the inverse method using groundwater flow equations. In this study, the Simultaneous Search based Pilot Point Method (SSBM) was applied with diverse information (e.g. hydraulic heads and/or tracer concentration) applications over previously developed sensitivity based Pilot Point Method (e.g. D-optimality based Pilot Point Method: DBM). In the case of DBM, due to the minimized the variance size, tracer concentration can be recognized as a tool to control the searching space of hydraulic conductivities. SSBM reduced the procedure of hydraulic conductivity searching, though it produced more variance for exploring hydraulic conductivities. In addition, SSBM was dependent on the initial hydraulic conductivity values for search finalized hydraulic conductivities. When tracer concentration was applied, searching hydraulic conductivities was more preferable than only when hydraulic head was applied. Applications of various data for searching hydraulic conductivities is recommended as a more efficient way.

An Experimental Study of Permeable Concrete Pavement for Application (투수성 콘크리트포장의 실용화를 위한 실험적 연구)

  • 문한영;김성수;정호섭
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.3
    • /
    • pp.165-173
    • /
    • 1998
  • 투수성 콘크리트포장은 우천시 도로포장 노면의 배수, 차량 주행 안전성의 향상 및 소음의 저감등을 목적으로 개발된 포장이지만 주행환경 및 도로주변과의 환경조화에도 기여한다. 일반적인 배수성 아스팔트 콘크리트포장에서는 투수계수 1$\times$10-2cm/sec를 목표로 정하고 있으나 본 연구에서는 투수성 콘크리트포장의 실용화를 위한 연구의 일환으로 투수계수1$\times$10-1cm/sec를 목표로 정하여 골재의 최대치수, 잔골재율 및 단위시멘트량을 변화시킨 투수성 콘크리트의 공극률, 연속공극률 및 투수계수와 제강도를 측정한 결과에 대하여 고찰하였다. 투수성 콘크리트의 목표투수계수 1$\times$10-1cm/sec 일 때 공극률 및 연속공극률은 각각 15 %와 12%정도이며, 압축강도는 240kg/$\textrm{cm}^2$정도의값을 나타내었으며, 골재의 최대치수가 10~13mm일 경우, 잔골재율 10~20%, 단위시멘트량 380 kg/$\textrm{cm}^2$정도가 적절한 배합으로 생각된다.

Estimation on Unsaturated Hydraulic Conductivity Function of Jumoonjin Sand for Various Relative Densities (주문진 표준사의 상대밀도에 따른 불포화 투수계수함수 산정)

  • Song, Young-Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2369-2379
    • /
    • 2013
  • The Soil-Water Characteristics Curve (SWCC) is affected by the initial density of soil under unsaturated condition. Also, the characteristic of hydraulic conductivity is changed by the initial density of soil. To study the effect of initial density of unsaturated soil, SWCC and the Hydraulic Conductivity Function (HCF) of Jumoonjin sand with various relative densities, 40%, 60% and 75% were measured in both drying and wetting processes. As the results of SWCC estimated by van Genuchten (1980) model, the parameter related to Air Entry Value(AEV), ${\alpha}$ in the wetting process is larger than that in drying process, but the parameters related to the SWCC slope, n and the residual water content, m are larger than those in wetting process. The AEV is increased or Water Entry Value (WEV) is decreased with increasing the relative density of sand. The AEV is larger than the WEV at the same relative density of sand. As the results of HCF estimated by van Genuchten (1980) model which is one of the parameter estimation methods, the unsaturated hydraulic conductivity maintained at a saturated one in the low level of matric suctions and then suddenly decreased just before the AEV or the WEV. The saturated hydraulic conductivity in drying process is larger than that in wetting process. The saturated hydraulic conductivity is decreased with increasing the relative density of sand in both drying and wetting processes. Also, the hysteresis in unsaturated HCFs between drying and wetting process was occurred like the hysteresis in SWCCs. According to the test results, the AEV on SWCC is decreased and the saturated hydraulic conductivity is increased with increasing the initial density. It means that SWCC and HCF are affected by the initial density in the unsaturated soil.