• Title/Summary/Keyword: 투수율

Search Result 371, Processing Time 0.02 seconds

Leachate Behavior within the Domestic Seashore Landfill(II)- Numerical Analysis of Pumping Method for Reducing Leachate Level - (폐기물 매립지 내에서의 침출수 거동(II)- 누적수위 저감을 위한 양수법의 수치해석 -)

  • 장연수;조용주
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.111-120
    • /
    • 1999
  • Leachate flow behavior due to intermediate cover soil of low hydraulic conductivity and the applicability of pumping method for reducing the leachate level in the landfill are analyzed with the numerical flow model, MODFLOW. Using the hydraulic conductivity and storativity data obtained from the field pumping and slug tests(Jang and Cho, 1999), the hydraulic condition within the landfill is validated. The optimum rate of pumping, the radius of influence, and the efficiency of horizontal drain are analyzed for reducing the leachate level in the landfill. From the results of the analyses, the barrier effect that the buried cover soil of low hydraulic conductivity prevents the vertical movement of leachate flow through the cover soil, which is found from the in-situ geotechnical studies(Jang and Cho, 1999), is identified again. Also, the installation of horizontal drains to the pumping well can increase the pumping rate from 120 ton/day per a well to 300 ton/day. The length of horizontal drain did not influence significantly on the drawdown-time curve of leachate in the landfill.

  • PDF

Numerical Simulation of Groundwater Flow in Feterogenetic Rockmass of Unsaturated Condition (암반의 불균질성을 고려한 불포화대 지하수 유동 평가)

  • Ha, Jaechul;Lee, Jeong Hwan;Cheong, Jae-yeol;Jung, Haeryong
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.87-99
    • /
    • 2016
  • We present the results of two-dimensional numerical simulations predicting the flow of groundwater in a fractured unsaturated zone. We applied the k-field distribution of permeability derived from discrete fracture network (DFN) modeling as the hydraulic properties of a model domain. To model an unsaturated zone, we set the depth from the ground surface to the underground aquifer. The rate of water infiltration into the unsaturated zone was divided into two parts, an artificial structure surface and unsaturated soil zone. The movement of groundwater through the unsaturated zone was simulated with particular emphasis on contaminant transport. It was clearly observed that the contaminants dissolved in groundwater transported vertically from the ground surface to the saturated zone.

Study on the Application of Urban Runoff Models (도시유출모형의 적용성에 관한 연구)

  • Hong, Wan-Taeck;Kim, Won-Il;Ahn, Won-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.715-719
    • /
    • 2005
  • 현재 우리나라는 1970년대 이후 급속한 경제성장으로 인하여 산업화 및 도시화 현상이 심화되고 있는 실정이며, 이러한 과정에서 불투수층의 증가로 인하여 첨두유출량의 증가, 자연유역에서 도시유역으로 변하면서 유역내 도달시간의 감소 등의 수문학적 특성이 변화로 예기치 못한 홍수로 인하여 피해가 발생하고 있다. 다라서 첨두유출량이 관망으로 전달되는 과정에서 관에 발생하는 부하의 증가로 인하여 내수침수 피해를 입게 되는데, 도시 유역에서의 인구 증가 및 산업활동에 따른 도시 개발로 인한 불투수면적의 증가로 우수유출량이 커지고 있으며, 저지대의 활용이 증대됨에 따라 내수 피해는 더욱 증가되고 있는 실정이다. 이러한 도시 유역의 재배 저감 대책 수립을 위해서는 먼저 실측자료와 도시유출 모형에서 산정된 첨두유출량과의 비교$\cdot$분석하여 최적의 모형을 채택하여야 한다. 또한 채택된 모형으로 적절한 설계 강우량이 선정되어야 하고, 그에 따른 유출량을 정확히 산정하여야 하나, 설계 강우량 산정을 위한 강우의 지속시간의 결정에 대해서 일반적인 기준이 확립되지 못하고 있는 실정이기에 재해 저감 대책 수립에 많은 어려움이 따르고 있다. 이에 본 연구에서는 실측 강우량, 첨두유출량 및 유출총량과 도시지역의 유출량 산정에 사용되어지는 ILLUDAS, SWMM 모형에 모의치와의 비교 연구를 통해 최적의 도시유출모형을 제시하고자 한다. 따라서 실측자료가 있는 서울시 장안$\cdot$뚝섬배수구역의 실측 강우와 펌프장에서 조사된 실측 유량과 ILLUD AS, SWMM 모형에 의해 산정된 유량과의 비교 분석 결과 SWMM 모형에 의한 첨두유량이 실측 첨두유출량과의 오차율에서 장안배수구역은 $21.1\%$, 뚝섬배수구역은 $4.3\%$로 가장 근접한 결과를 나타내었으며, 총 유출량에서도 각각 $7.8\%,\;13.2\%$의 오차율을 가지는 것으로 분석되어 타 모형에 비해 실유량과의 차가 가장 적은 것으로 모의되었다. 향후 도시유출을 모의하는 데 가장 근사한 유출량을 산정할 수 있는 근거가 될 것이며, 도시재해 저감대책을 수립하는데 기여할 수 있을 것이라 판단된다.

  • PDF

A Laboratory Model Study on the Reactions of the Pore Water Pressure in the Weakened Layer of a Natural Slope by the Confined Groundwater (피압지하수에 의한 자연사면 연약층내의 간극수압 반응에 관한 모형 실험 연구)

  • Jeong, Doo Young;Lee, Kwang Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.583-594
    • /
    • 1994
  • One of the major elements of a natural landslide is the increase of the pore water pressure in a weakened layer. Therefore, the measurement of the pore water pressure in the layer is important. This work is a laboratory model study of the measurement of the pore water pressure with regard to the confined groundwater level, the permeability of the crack zone and the weathering degree of the weakened layer. By the model of the Tertiary period failure type and the Colluvium failure type, the reactions of the pore air pressure and the pore water pressure were measured in the weakened layer according to the permeability of the filter on the condition of the confined groundwater states. On the reaction phase of the pore pressure according to the during time, the Tertiary period failure type proved to be a step type and the Colluvium failure type turned out to be a wave type. The reaction ratios of the pore water pressure in the Tertiary period failure type are higher than the Colluvium failure type, decrease according to increasing of the weathering degree of the weakened layer.

  • PDF

Slope Stability Analysis of Unsaturated Soil Slopes Due to Rainfall Infiltration (강우침투에 따른 불포화 토사사면의 안정해석)

  • 조성은;이승래
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.51-64
    • /
    • 2000
  • This paper presents a procedure of calculating a safety factor of the unsaturated slope suffering from the rainfall infiltration. The process of infiltration into a slope due to rainfall and its effect on the behavior of the soil slope are examined by using a two dimensional finite element flow-deformation coupled analysis. A factor of safety is calculated at various elapsed times after the commencement of rainfall as in the following procedure. First, stresses are estimated at each Gaussian point from the coupled finite element analysis. Then, the global stress smoothing method is applied to get a continuous stress field. Based on this stress field, a factor of safety is calculated for a specified slip surface by a stress integration scheme. Then, a search strategy is used to find out a critical slip surface which is associated with the minimum factor of safety. Some numerical examples are analyzed in order to study the effect of hydraulic conductivity on the slope stability during rain-induced infiltration. According to the results, local failure zone can be formed near the slope surface due to inhomogeneous distribution of hydraulic conductivity If the failure zone is once formed, then the region extends until a large amount of slide activates. Therefore the local failure can be neglected no longer in the stability analysis.

  • PDF

Applicability Evaluation and Development of High Strength Spacer with Plastic Fiber and Slag Cement (플라스틱 섬유재와 슬래그 시멘트를 이용한 고강도 간격재의 개발 및 적용성 평가)

  • Kwon, Seung-Jun;Jo, Hong-Jun;Park, Sang-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.92-98
    • /
    • 2014
  • Spacer is a construction material for maintaining cover depth and steel installation, however several problems like staining, leakage, and cracking are currently issued due to performance degradation and unsatisfactory dimensional stability of spacer. Plastic composite is widely used for prevention of brittle failure in cement based material, which yields improvement of crack resistance and ductile failure. This study is for development and applicability evaluation of high strength spacer with slag cement for environmental load reduction and plastic composite like polypropylene fiber, nylon fiber, and glass fiber. For this work, unit weight of 4 different plastic fibers are evaluated through preliminary tests. Physical tests including compressive, flexural, and tensile strength and durability tests including absorption, permeability, length change, crack resistance, carbonation, and freezing and thawing are performed. Through various tests, optimum plastic fiber is selected and manufacturing system for high strength spacer with the selected fiber is developed. Dimensional stability of the developed spacer is evaluated through field applicability evaluation.

An Experimental Study on the Quality and Crack Healing Characteristics of Repair Mortar Containing Self-Healing Solid Capsules of Crystal Growth Type (결정성장형 자기치유 고상캡슐을 혼합한 보수 모르타르의 품질 및 균열 치유 특성에 관한 실험적 연구)

  • Oh, Sung-Rok;Kim, Cheol-Gyu;Nam, Eun-Joon;Choi, Yun-Wang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.59-66
    • /
    • 2020
  • In this study, self - healing solid capsules of crystal growth type which can be mixed directly with repair mortar were prepared, and the quality and crack healing performance of repair mortar with self - healing solid capsules were evaluated. The table flow and the air flow rate of the repair mortar material mixed with self-healing solid capsules were found to have no significant influence on table flow and air volume regardless of mixing ratio. Compressive strength tended to decrease with increasing capsule mixing ratio. As a result of evaluation of crack healing properties according to constant water head permeability test, initial water permeability decreased, and reaction products were generated over time and cracks were healed.

A Study on the Self-heaing Properties of Inorganic-organic Additives with Recycling Sodium Acetate (결정성 염을 포함한 유⋅무기계 자기치유 소재의 결정 생성 효과에 따른 치유 특성 연구)

  • Dong Cheol, Park;Hyuk, Kwon;Moo Yeon, Hwang;Tea Hyung, Kim;Kang Bum, Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.584-592
    • /
    • 2022
  • In this paper, a study was conducted to improve self-healing and strength properties using sodium acetate. The developed inorganic-organic self-healing materials and recycled sodium acetate were manufactured to evaluate self-healing and permeability reduction properties. As a result of the experiment with recycled sodium acetate, the compressive strength of the material prepared with anhydrous and trihydrate at a ratio of 7:4 was higher than that of the mixture using anhydrous. It was confirmed that the compressive strength was improved by 3~7 %. In addition, the maximum permeability reduction rate was 92.6 %, which satisfied the self-healing properties.

Compressive Strength and Healing Performance of Mortar Using Self-healing Inorganic Materials (자기치유형 무기계 혼합재를 사용한 모르타르의 압축강도 및 치유성능)

  • Hyung-Suk, Kim;Woong-Jong, Lee;Sung, Choi;Kwang-Myong, Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.577-583
    • /
    • 2022
  • In this study, the characteristics of self-healing mortars produced using an inorganic self-healing material consisting of ground granulated blast furnace slag, expansion agent, and anhydrite, were investigated. For three types of self-healing mortars with different amounts of the inorganic healing material, compressive strength was measured and the self-healing performance was evaluated through the constant water head permeability test. The healing rate and equivalent crack width according to crack-induced aging were used as indicies of healing performance evaluation. Considering the development of compressive strength of the self-healing mortars, the change in the healing rate with healing periods, and the economic feasibility, the optimal amount of inorganic self-healing materials was suggested as 20 % of the mass of cement.

An analysis of the properties of mortar according to the change of the replacement rate of waste foundry sands (폐주물사의 치환율 변화에 따른 모르타르의 특성 분석)

  • Ryu, Hyun-Gi;Kwon, Yong-Ju
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.99-104
    • /
    • 2009
  • For recycling of waste foundry sands, researchers recently try to recycle them rather than depend on reclamation, and are studying on how to combine waste foundry sands with cement and use them for various kinds of construction material as the effective recycling method of waste foundry sand. In this research, The ways to find the proper replacement rate of waste foundry sands and to make use of them were suggested through the experiments on the range to apply waste foundry sands with two levels of 1:3 mixture rate of W/C 43% and 50%. The research result showed that in terms of liquidity as the characteristic of unhardened mortar, as the replacement rate of waste foundry sands increased, its flow tended to decrease. The amount of air also displayed a similar tendency to that of liquidity in that the higher the replacement rate of waste foundry sands became, the lower it became. With regard to the solidity trait of hardened mortar, it increased when the waste foundry sands were replaced more, and the replacement of waste foundry sands caused increased initial solidity. As for the amount of water permeated and that of water absorbed as the water tight proofing properties, the amount of permeated water was proved to decrease because of the gap recharge effect by the fine powder of waste foundry sands, and the replacement of waste foundry sands in the structures requiring watertightness is concluded to be very effective.

  • PDF