• Title/Summary/Keyword: 투수계수 경험식

Search Result 14, Processing Time 0.021 seconds

Determination of Hydraulic Conductivities in the Sandy Soil Layer through Cross Correlation Analysis between Rainfall and Groundwater Level (강우-지하수위 상관성 분석을 통한 사질토층의 수리전도도 산정)

  • Park, Seunghyuk;Son, Doo Gie;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.29 no.3
    • /
    • pp.303-314
    • /
    • 2019
  • Surface permeability and shallow geological structures play significant roles in shaping the groundwater recharge of shallow aquifers. Surface permeability can be characterized by two concepts, intrinsic permeability and hydraulic conductivity, with the latter obtained from previous near-surface geological investigations. Here we propose a hydraulic equation via the cross-correlation analysis of the rainfall-groundwater levels using a regression equation that is based on the cross-correlation between the grain size distribution curve for unconsolidated sediments and the rainfall-groundwater levels measured in the Gyeongju area, Korea, and discuss its application by comparing these results to field-based aquifer test results. The maximum cross-correlation equation between the hydraulic conductivity derived from Zunker's observation equation in a sandy alluvial aquifer and the rainfall-groundwater levels increases as a natural logarithmic function with high correlation coefficients (0.95). A 2.83% difference between the field-based aquifer test and root mean square error is observed when this regression equation is applied to the other observation wells. Therefore, rainfall-groundwater level monitoring data as well as aquifer test are very useful in estimating hydraulic conductivity.

Evaluation of Empirical Porous-Media Parameters for Numerical Simulation of Wave Pressure on Caisson Breakwater Armored with Tetrapods (테트라포드 피복 케이슨 방파제 파압 수치모의를 위한 투수층 경험계수 산정)

  • Lee, Geun Se;Oh, Sang-Ho;Yoon, Sung Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.344-350
    • /
    • 2019
  • In this study, waves2Foam implemented in OpenFOAM is used to simulate numerically the wave pressure on a verical caisson under the condition of with and without the placement of Tetrapods in front of the caisson. The comparisons of the numerical results and the experimental data show fairly good agreement between them. Based on this, it is possible to suggest an optimal combination of coefficients for an empirical formula to represent the protective TTP layer as porous media.

Estimate of Wave Overtopping Rate on Armoured Slope Structures Using FUNWAVE-TVD Model (FUNWAVE-TVD 모델을 이용한 경사구조물의 월파량 산정)

  • Moon Su Kwak
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.1
    • /
    • pp.11-19
    • /
    • 2024
  • In this study, the program was modified by adding the empirical formula of EurOtop (2018) to enable calculation of wave overtopping on armoured slope structures in the FUNWAVE-TVD model using the fully nonlinear Boussinesq equation. The validity of the modified numerical model was verified by comparing it with CLASH data and experiment data for the rubble mound structure. This model accurately reproduced the change in wave overtopping rate according to the difference in the roughness factor of the armoured block, and well reproduced the rate of decrease in wave overtopping rate due to the increase in relative freeboard. The overtopping rate of the armoured slope structures showed significant differences depending on the positioning condition of the armoured blocks. When Tetrapods were placed with regular positioning, the overtopping rate increased significantly compared to when they were placed with random positioning, and it was consistent with when they were placed with Rocks. Meanwhile, when rocks were placed in one row, the wave overtopping rate was greater than when rocks were placed in two rows, which is believed to be due to the influence of the roughness and permeability of the structure's surface.

Partial Drainage Characteristics of Clayey Silt with Low Plasticity from the West Coast (서해안 저소성 점토질 실트 지반의 부분배수 특성)

  • Kim, Seok-Jo;Lee, Sang-Duk;Kim, Ju-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.9
    • /
    • pp.17-27
    • /
    • 2016
  • Parial drainage characteristics of clayey silt with low plasticity from the west coast (Incheon and Hwaseong) was analyzed using CPTU based existing correlation equations and compulsory replacement method. Generally, the estimated $OCRs={\kappa}{\cdot}((q_t-{\sigma}_{vo})/{\sigma}^{\prime}_{vo})$ using Powell and Quartman(1988) were higher than those obtained by the oeodometer tests. These trends were noticeable for the layers containing a lot of silty and sand soils. The assessment of partial drainage conditions was performed through Schnaid et al. (2004)'s equation; it is based on plotting the normalized cone resistance, $Q_t$ versus the pore pressure parameter, $B_q$ in combination with the strength incremental ratio, $s_u/{\sigma}^{\prime}_{vo}$ to the CPTU data. It is evident that more than half of the data fall in the range where $B_q$ < 0.3, corresponding to the domain in which the partial drainage prevails when testing normally consolidated soils at a standard rate of penetration (2 cm/s). To estimate the replacement depth of clayey silt with low plasticity, back analysis was carried out to evaluate the internal friction angle based on where the design depths are equal to the checked depths using bearing capacity equation. The internal friction angels obtained from the back analysis tended to increase as the plasticity index decreases, which is ranged approximately from ${\varphi}^{\prime}=2^{\circ}$ to ${\varphi}^{\prime}=7^{\circ}$.