• Title/Summary/Keyword: 투사오차

Search Result 34, Processing Time 0.022 seconds

Effects of vertical head rotation on the posteroanterior cephalometric measurements (정모두부방사선사진 촬영시 두부의 수직회전에 따른 투사오차)

  • Koh, Eun-Hee;Lee, Ki-Heon;Hwang, Hyeon-Shik
    • The korean journal of orthodontics
    • /
    • v.33 no.2 s.97
    • /
    • pp.73-84
    • /
    • 2003
  • This study was performed to find out how much projection errors in the cephalometric measurements were made by vertical head rotation in taking posteroanterior cephalograms. 25 adults without any apparent facial asymmetry or severe sagittal skeletal discrepancy were selected and the posteroanterior cephalograms were taken with the head rotated $5^{\circ},\;10^{\circ}$ superior and inferior each to the reference $position(0^{\circ})$. The 7 height, 5 width and 6 angular measurements were taken at each 5 positions. Through the statistical analysis of all measurements taken at each rotated position, folowing results were obtained.1. The projection errors of height measurements were remarkably target than those of width or angular measure nents. f. Among the height measurements, the farther to the rotation axis the measurements were, the larger the projection errors were. 3. Among the width measurements, mandibular width and mandibular width of mandibular first molars showed significant differences between the values taken at each rotated position, while nasal width, maxillary width and intermolar width of maxillary first molars did not. 4. Among the angular measurements, the angle between horizontal reference line and the line that is connected to crista galli and antegonion or maxillare showed significant differences between the values taken at each rotated Position. The above results suggest that it is needed to the effort to keep constant head position for taking the useful posteroanterior cephalogra, because projection errors are caused by vertical head rotation.

Enhanced Pseudo Affine Projection Algorithm with Variable Step-size (가변 스텝 사이즈를 이용한 개선된 의사 인접 투사 알고리즘)

  • Chung, Ik-Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.79-86
    • /
    • 2012
  • In this paper, we propose an enhanced algorithm for affine projection algorithms which have been proposed to speed up the convergence of the conventional NLMS algorithm. Since affine projection (AP) or pseudo AP algorithms are based on the delayed input vector and error vector, they are complicated and not suitable for applying methods developed for the LMS-type algorithms which are based on the scalar error signal. We devised a variable step size algorithm for pseudo AP using the fact that pseudo AP algorithms are updated using the scalar error and that the error signal is getting orthogonal to the input signal. We carried out a performance comparison of the proposed algorithm with other pseudo AP algorithms using a system identification model. It is shown that the proposed algorithm presents good convergence characteristics under both stationary and non-stationary environments despites its low complexity.

Changes of lateral cephalometric values according to the rotation of head (두부회전에 따른 측모두부방사선 계측치의 변화)

  • Kim, Kwang-Soo;Hwang, Mee-Sun;Choi, Eui-Hwan;Kim, Kwang-Won;Yoon, Young-Jooh
    • The korean journal of orthodontics
    • /
    • v.30 no.1 s.78
    • /
    • pp.53-66
    • /
    • 2000
  • This study was performed to find out the effect of projection errors on cephalometric linear and angular measurements according to head rotation during taking lateral cephalometric radiographs. Seventeen skulls with permanent dentition and no gross asymmetry were obtained from the Department of Anatomy, Medical School, Chosun University. Total 527 x-ray films were taken with $1^{\circ}$ interval from the reference position($0^{\circ}$) to ${\pm}15^{\circ}$ around the vertical axis (Z axis) which is perpendicular to the midpoint of the line connecting the center of two ear rods in submento-vertex direction. Statistical analysis was performed by paired t-test if there were statistically significant differences between the mean of the reference position($0^{\circ}$) and that of each rotation angle. The following results were obtained. 1. The projection errors of angular measurements were smaller than those of linear measurements. 2. The projection errors of angular measurements including midline landmarks were smaller than those including bilateral landmarks. 3. The horizontal linear measurements were gradually decreased when the stroll was rotated toward the film, but slightly increased and then decreased when the skull was rotated toward the focal spot. However, the changes were smaller in focal direction. 4. The projection errors of horizontal linear measurements were larger than those of vertical linear measurements. 5. The projection errors of vertical linear measurements were increased with increased distance from the rotation axis to vertical measurements. It is concluded that the use of angular measurements rather than linear measurements is recommended to minimize the projection errors.

  • PDF

Subband Affine Projection Algorithm Using Variable Step Size (가변 스텝사이즈를 이용한 부밴드 인접투사 알고리즘)

  • Choi, Hun;Bae, Hyeon-Deok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.69-74
    • /
    • 2007
  • In signal processing applications with highly correlated input signals, subband affine projection algorithm and step size controlling is a good solution for improving the slow convergence rate and large computational complexity of LMS-type algorithms. This paper proposes a subband affine projection algorithm using a variable step size. The proposed method achieves fast convergence rate and small steady-state error with a small computational complexity by combining the SAP and step size controlling in a subband structure. Experimental results on highly correlated input signal show that the proposed method is superior to the conventional methods.

Hand Detection for Front-Projected Interactive Displays (전방 투사 인터랙티브 디스플레이를 위한 맨손 검출)

  • Nam, Yang-Hee;Oh, Su-Jin
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.9
    • /
    • pp.1135-1142
    • /
    • 2007
  • Front-projection type displays make it difficult to apply traditional skin color detection for human hand because the projected beam not only reaches to the screen but also to the user's hand. This paper solves this problem by modeling the distortion between original image and its final camera input. Our approach improves hand detection rate by modeling of interference effect among color channels and of intra-frame intensity and also by introducing adaptive threshold for color difference in skin region.

  • PDF

Effects of form errors of the surface of a micromirror on the optical system of the TMA projector (마이크로미러의 표면형상오차가 TMA 프로젝터의 광학계에 미치는 영향)

  • 조영식;김병창;김승우;황규호
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.38-39
    • /
    • 2000
  • 마치 살아있는 것처럼 움직이는 영상을 보고자 하는 인류의 욕구가 19세기에 다양한 광학 기구들을 낳게 했는데, 이 중의 하나가 영화이다. 이러한 필름을 기초로 한 투사기술은 그러한 인간의 욕구를 작게나마 해소시켰지만, 수평선 저 너머에서 일어나는 일을 동시에 눈으로 보고 싶어하는 꿈을 실현시켜 주진 못했다. 하지만 이러한 생방송을 할 수 없는 필름기술의 한계는 CRT라고 하는 전자 투사 디스플레이(electronic projection display)의 도움으로 극복되었다. (중략)

  • PDF

Image-based Modeling by Minimizing Projection Error of Primitive Edges (정형체의 투사 선분의 오차 최소화에 의한 영상기반 모델링)

  • Park Jong-Seung
    • The KIPS Transactions:PartB
    • /
    • v.12B no.5 s.101
    • /
    • pp.567-576
    • /
    • 2005
  • This paper proposes an image-based modeling method which recovers 3D models using projected line segments in multiple images. Using the method, a user obtains accurate 3D model data via several steps of simple manual works. The embedded nonlinear minimization technique in the model parameter estimation stage is based on the distances between the user provided image line segments and the projected line segments of primitives. We define an error using a finite line segment and thus increase accuracy in the model parameter estimation. The error is defined as the sum of differences between the observed image line segments provided by the user and the predicted image line segments which are computed using the current model parameters and camera parameters. The method is robust in a sense that it recovers 3D structures even from partially occluded objects and it does not be seriously affected by small measurement errors in the reconstruction process. This paper also describesexperimental results from real images and difficulties and tricks that are found while implementing the image-based modeler.

Individual Variable Step-Size Subband Affine Projection Algorithm (독립 가변 스텝사이즈 부밴드 인접투사 알고리즘)

  • Choi, Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.3
    • /
    • pp.443-448
    • /
    • 2022
  • This paper presents a subband affine projection algorithm with variable step size to improve convergence performance in adaptive filtering applications with long adaptive filters and highly correlated input signals. The proposed algorithm can obtain fast convergence speed and small steady-state error by using different step sizes for each adaptive sub-filter in the subband structure to which polyphase decomposition and noble identity are applied. The step size derived to minimize the mean square error of the adaptive filter at each update time shows better convergence performance than the existing algorithm using a variable step size. In order to confirm the convergence performance of the proposed algorithm, which is superior to the existing algorithm, computer simulations are performed for mean square deviation(MSD) for AR(1) and AR(2) colored input signals considering the system identification model.

Comparison of landmark position between conventional cephalometric radiography and CT scans projected to midsagittal plane (3차원 CT자료에서 선정된 계측점을 정중시상면으로 투사한 영상과 두부계측방사선사진상의 계측정의 위치 비교)

  • Park, Jae-Woo;Kim, Nam-Kug;Chang, Young-Il
    • The korean journal of orthodontics
    • /
    • v.38 no.6
    • /
    • pp.427-436
    • /
    • 2008
  • Objective: The purpose of this study is to compare landmark position between cephalometric radiography and midsagittal plane projected images from 3 dimensional (3D) CT. Methods: Cephalometric radiographs and CT scans were taken from 20 patients for treatment of mandibular prognathism. After selection of land-marks, CT images were projected to the midsagittal plane and magnified to 110% according to the magnifying power of radiographs. These 2 images were superimposed with frontal and occipital bone. Common coordinate system was established on the base of FH plane. The coordinate value of each landmark was compared by paired t test and mean and standard deviation of difference was calculated. Results: The difference was from $-0.14{\pm}0.65$ to $-2.12{\pm}2.89\;mm$ in X axis, from $0.34{\pm}0.78$ to $-2.36{\pm}2.55\;mm$ ($6.79{\pm}3.04\;mm$) in Y axis. There was no significant difference only 9 in X axis, and 7 in Y axis out of 20 landmarks. This might be caused by error from the difference of head positioning, by masking the subtle end structures, identification error from the superimposition and error from the different definition.

Geometric Calibration of Cone-beam CT System for Image Guided Proton Therapy (영상유도 양성자치료를 위한 콘빔 CT 재구성 알고리즘: 기하학적 보정방법에 관한 연구)

  • Kim, Jin-Sung;Cho, Min-Kook;Cho, Young-Bin;Youn, Han-Bean;Kim, Ho-Kyung;Yoon, Myoung-Geun;Shin, Dong-Ho;Lee, Se-Byeung;Lee, Re-Na;Park, Sung-Yong;Cho, Kwan-Ho
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.209-218
    • /
    • 2008
  • According to improved radiation therapy technology such as IMRT and proton therapy, the accuracy of patient alignment system is more emphasized and IGRT is dominated research field in radiation oncology. We proposed to study the feasibility of cone-beam CT system using simple x-ray imaging systems for image guided proton therapy at National Cancer Center. 180 projection views ($2,304{\times}3,200$, 14 bit with 127 ${\mu}m$ pixel pitch) for the geometrical calibration phantom and humanoid phantoms (skull, abdomen) were acquired with $2^{\circ}$ step angle using x-ray imaging system of proton therapy gantry room ($360^{\circ}$ for 1 rotation). The geometrical calibration was performed for misalignments between the x-ray source and the flat-panel detector, such as distances and slanted angle using available algorithm. With the geometrically calibrated projection view, Feldkamp cone-beam algorithm using Ram-Lak filter was implemented for CBCT reconstruction images for skull and abdomen phantom. The distance from x-ray source to the gantry isocenter, the distance from the flat panel to the isocenter were calculated as 1,517.5 mm, 591.12 mm and the rotated angle of flat panel detector around x-ray beam axis was considered as $0.25^{\circ}$. It was observed that the blurring artifacts, originated from the rotation of the detector, in the reconstructed toomographs were significantly reduced after the geometrical calibration. The demonstrated CBCT images for the skull and abdomen phantoms are very promising. We performed the geometrical calibration of the large gantry rotation system with simple x-ray imaging devices for CBCT reconstruction. The CBCT system for proton therapy will be used as a main patient alignment system for image guided proton therapy.

  • PDF