• Title/Summary/Keyword: 투과파

Search Result 311, Processing Time 0.026 seconds

Effect of Energy Loss by a Vertical Slotted Wall (직립 슬릿벽에 의한 에너지 손실효과)

  • Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.5
    • /
    • pp.295-303
    • /
    • 2015
  • The eigenfunction expansion method is appled for the wave scattering by a vertical slotted, where both the inertial and quadratic drag terms are involved. Quadratic drag term representing the energy loss is linearized by the application of socalled equivalent linearization. The drag coefficient, which was empirically determined by Yoon et al.(2006) and Huang(2007) is used. Analytical results are verified by comparison to the experimental results conducted by Kwon et al.(2014) and Zhu and Chwang(2001). Using the developed design tool, the effect of energy loss by a vertical slotted wall is estimated with various design parameters, such as porosity, submergence depth, shape of slits and wave characteristics. It is found that the maximum value of energy loss across the slotted wall is generated at porosity value less than P = 0.1. The present solutions can provide a good predictive tools to estimate the wave absorbing efficiency by a slotted-wall breakwater.

Nondestructive Imaging of an Object Using the Compact Continuous-Wave Sub-Terahertz Imaging System (소형 CW Sub-THz 이미징 시스템을 이용한 물체의 비파괴 이미징)

  • Jang, Jin-Seok;Kwon, Il-Bub;Yoon, Dong-Jin;Seo, Dae-Cheol
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.4
    • /
    • pp.352-358
    • /
    • 2010
  • This paper presented compact CW sub-THz imaging system using the terahertz transmitter(Tx) that generating 0.34 THz electromagnetic wave on based electronic device. Using 0.34 THz electromagnetic wave generated by Tx, we transmitted to sample by point by point scan method and measured transmitting terahertz wave magnitude and phase information respectively with terahertz receiver(Rx) based on sub harmonic mixer. This paper measured and compared images of several samples to obtain better imaging results by changing time delay and step distance of scanning stage which affect image resolution. Also, through the imaging measurement of various samples, we were able to assure possibility of application of terahertz wave.

A New Method for Determining the Absorption Coefficient of Oxy- and Deoxyhemoglobin by use of a Thin-fi im Optical Waveguide Sensor (박막광도파로 센서를 이용한 산화 및 환원 혈색소의 새로운 흡광계수 측정법)

  • 강신원
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.4
    • /
    • pp.387-394
    • /
    • 1995
  • A simple method for determining the absorption coefficient of oxyhemoglobin and deoxyhemoglobin in human blood is proposed as an application of the complex propagation constant of a guided wave in a thin-film optical waveguide. A serial multichannel sample chamber is constructed on the waveguide to vary the interaction length between the evanescent field and the sample, and the dependence of the sensor response on the interaction length is investigated for the various concentration of two hemoglobins. The sensor response is linearly proportional to the interaction length and the concentration of two hemoglobins. The attenuation constant due to the evanescent field absorption between the samples is experimentally obtained with the designed sensor, and then the absorption coefficient is determined by the proposed method. The absorption coefficients determined by the proposed method fairly well coincided with those obtained by the conventional transmission measurement.

  • PDF

An Experimental Study on the Fire Risk Assessment & Calculation Breakthrough Time through Permeation Test of Chemical Protective Clothing (화학보호복의 화재위험성 및 화학적 투과시험을 통한 파과시간산정에 관한 실험적 연구)

  • Ko, Jae-Sun;Park, Pyoung-Kyu
    • Fire Science and Engineering
    • /
    • v.24 no.2
    • /
    • pp.21-30
    • /
    • 2010
  • We have test chemical resistance and flame retardant properties of chemical protective clothing Fabrics by the ASTM and ISO standard methods. The flame retardant test results show that polyethylene is poor in flame resistance but fluoroelastomer add to decabrom is excellent in flame resistance. Especially, nowadays heat protective clothing for firefighters, which is aluminized film layers laminated to aramid fabric, show the excellent flame resistance. However, the chemical resistance test results show that aluminium is high corrosive in 4M NaOH solution alone. The problem of corrosion can be overcome by employing multiple barrier film. Also, based on the result of flame retardant test, duel skin of polymer barrier film add to aluminum film and single skin of fluorinated rubber with flame retardant materials seems to be fit for the chemical protective clothing. Also the thermal protection and heat transfer test results show that TPP and HTI is increased assured that the continued study on fire risk assessment & chemical resistance of chemical protective clothing fabrics will contribute to the upgrade the performances of chemical protective clothing fabrics.

The Magnetic Properties of Amorphus Phase in Mechanically Alloyed $Fe_{50}Zr_{50}$ Powders (기계적 합금화한 비정질 $Fe_{50}Zr_{50}$ 분말의 자기특성)

  • 이성의;나형용;김원태;유성초
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.1
    • /
    • pp.7-12
    • /
    • 1997
  • Amorphous $Fe_{50}Zr_{50}$ alloy has been manufactured by mechanical alloying from pure elemental powders of Fe and Zr in conventional ball mill under an Ar atmosphere. Structure and magnetic properties of the amorphous phase were studied by transmission electron microscopy and SQUID magnetometry. Selected area diffraction patterns taken from the mechanically alloyed powders showed two halo rings, indicating coexistence of Fe rich and Zr rich amorphous phases in mechanically alloyed powder. Curie temperature of the Fe rich amorphous phase, measured by Arrot plot, was 195 K. Fe content in the ferromagnetic amorphous phase, estimated from the Curie temperature, was about 65 at%. Spin wave stiffness constant of $Fe_{50} Zr_{50}$ alloys processed for 100 and 200 hrs were 52.2 and 63.8 meV, respectively. The higher spin wave stiffness constant in 200 hrs milled powders may arise from the precipitation of $\alpha$-Fe by partial crystallization of amorphous phase.

  • PDF

High-Speed High-Resolution Terahertz Time-Domain Spectrometer (고속 고분해 테라헤르츠 시간영역 분광기)

  • Kim, Young-Chan;Kim, Ki-Bok;Yee, Dae-Su;Yi, Min-Woo;Ahn, Jae-Wook
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.5
    • /
    • pp.370-375
    • /
    • 2008
  • High-speed high-resolution terahertz time-domain spectroscopy (THz-TDS) is demonstrated using the asynchronous-opticalsampling (AOS) method. A time-domain signal with a 10-ns time window is rapidly acquired by using two femtosecond lasers with slightly different repetition frequencies to generate and detect a terahertz pulse wave, without a mechanical delay stage. The spectrum obtained by the fast Fourier transformation (FFT) of the time-domain waveform has a frequency resolution of 100 MHz. The time resolution of our spectrometer is measured using the cross-correlation method to be 278 fs. A transmission spectrum of water vapor is measured and the absorption lines are analyzed in the frequency range from 0.1 to 1.2 THz.

Characteristics of Run-up Height over Sandy Beach with Submerged Breakwaters ; PART II - Effect of Shape of Submerged Breakwaters (잠제 설치 연안의 처오름 높이 특성 ; PART II - 잠제의 제원에 의한 영향)

  • Hur, Dong-Soo;Lee, Woo-Dong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4B
    • /
    • pp.429-439
    • /
    • 2008
  • The purpose of this study is to examine the characteristics of run-up height over sandy beach due to the shape of submerged breakwater. For the discussion on it in detail, 3-Dimensional numerical model with Large Eddy Simulation, which is able to simulate directly interaction of Wave Structure Sandy beach (hereafter, LES-WASS-3D; Hur and Lee, 2007) has been used to simulate run-up height over sandy beach as well as wave field around submerged breakwaters. Using the results obtained from numerical simulation, the effects of the shape of submerged breakwaters (crown height, crown width, crown length and submerged breakwater's slope gradient) on run-up height over sandy beach have been discussed related to the wave height distribution and characteristics of up-layer flow around ones.

Characteristics of Run-up Height over Sandy Beach with Submerged Breakwaters : PART I - Effect of Plane Arrangement of Submerged Breakwaters (잠제 설치 연안의 처오름 높이 특성 : PART I - 잠제의 평면배치에 의한 영향)

  • Hur, Dong-Soo;Lee, Woo-Dong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3B
    • /
    • pp.345-354
    • /
    • 2008
  • In this present study, we made a first attempt to investigate physical transformations of incident waves in surf and swash zone and hydrodynamic phenomena of detached and submerged breakwaters. For an accurate simulation of the complicated wave deformation, Three-Dimensional numerical model with Large Eddy Simulation has been developed recently and expanded properly for the current applications, which is able to simulate an accurate and direct WAve Structure Sandy seabed interaction (hereafter, LES-WASS-3D). LES-WASS-3D has been validated through the comparison with experimental results for limited cases, and has been used for the simulation of wave run-up on sandy beach, mean fluid flows over and around submerged structures and swash zone (alongshore/rip current), and spatial distribution of wave height in wide fluid regions. In addition, a strategy of efficient deployment ($Y/L_i=1.50{\sim}1.75$, $W/L_r=0.50$) of the submerged breakwaters has been discussed.

Design of PWM-Based Photo Irradiation System for Acne Treatment (여드름 치료를 위한 PWM 기반 광 조사 시스템 설계)

  • Kim, Chang-Su;Lim, Hyun-Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.3
    • /
    • pp.207-215
    • /
    • 2012
  • As one of photo dynamic therapies, the existing LED photo irradiation method with 635 nm continuous wave has most frequently been used for acne treatment, it suffered from a low energy efficiency and generation of a large amount of heat in tissues requiring improvement measures. In this thesis, a LED photo irradiation system for acne treatment has been designed using PWM(Pulse Width Modulation) mode to enhance the energy efficiency and prevent thermal destruction in tissues. System configuration consisting largely of timer module, PWM module, and photo transfer device has been designed with the use of 1 W LED at a wavelength of 660 nm for the photo transfer device to increase skin penetration depth for treatment of acne. Frequency and wave form generated by using PWM control was verified along with confirmation of output energy of 660 nm LED and surface temperatures of tissues, followed by evaluation of stable energy outputs and stability of tissues. The results indicated that whereas power loss was high and thermal destruction in tissues was exhibited when C.W mode was used to obtain the optical energy of 1 W LED at a wavelength of 660 nm for acne treatment, realization of PWM mode allowed lowering of power consumption for LED through pulse width modulation, and no occurrence of thermal destruction in tissues, suggesting that PWM mode is safer and more effective for treatment of acne than C.W mode.

Evaluation of Ultrasonic Nonlinear Characteristics in Artificially Aged Al6061-T6 (인공시효된 Al6061-T6의 초음파 비선형 특성 평가)

  • Kim, Jongbeom;Lee, KyoungJun;Jhang, Kyung-Young;Kim, ChungSeok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.3
    • /
    • pp.220-225
    • /
    • 2014
  • Generally, the nonlinearity of ultrasonic waves is measured using a nonlinear parameter ${\beta}$, which is defined as the ratio of the second harmonic's magnitude to the power of the fundamental frequency component after the ultrasonic wave propagates through a material. Nonlinear parameter ${\beta}$ is recognized as an effective parameter for evaluating material degradation. In this paper, we evaluated the nonlinear parameter of Al6061-T6 which had been subjected to an artificial aging heat treatment. The measurement was using the transmitted signal obtained from contact-type transducers. After the ultrasonic test, a micro Vickers hardness test was conducted. From the result of the ultrasonic nonlinear parameter, the microstructural changes resulting from the heat treatment were estimated and the hardness test proved that these estimates were reasonable. Experimental results showed a correlation between the ultrasonic nonlinear parameter and microstructural changes produced by precipitation behavior in the material. These results suggest that the evaluation of mechanical properties using ultrasonic nonlinear parameter ${\beta}$ can be used to monitor variations in the mechanical hardness of aluminum alloys in response to an artificial aging heat-treatment.