2002년에 한국에 도입된 주 5일 근무제는 사람들의 주중 통행 및 주말 통행 패턴을 바꾸어 왔다. 이러한 변화가 교통 시스템에 미치는 영향을 파악하기 위하여 여러 연구들이 수행되었으나 이 연구들은 공간적 요소를 고려하지 않은 통행 패턴 변화에만 초점이 맞추어졌다. 즉, 개인 통행 패턴의 변화에 대한 연구는 많이 진행되었지만 이러한 변화에 대한 공간적 분석 기법의 부재로 인해 통행 패턴의 변화를 정확하게 분석하지는 못하였다. 본 연구는 주 5일 근무제가 도입된 뒤의 통행변화의 분석을 목적으로 하고 있으며, 이를 위해 통행 벡터 지표처럼 통행 패턴의 변화를 정량적인 관점만이 아닌 공간적인 관점에서 분석할 수 있는 새로운 지표를 이용하는데. 이 새로운 지표는 GIS 기술과 한국 고속도로의 TCS 자료를 이용한다. 본 연구의 결과는 고속도로 TCS 자료에 적용된 이 지표가 주 5일 근무제가 통행 행태에 영향을 미친다는 것을 보여주고 있고, 따라서 통행패턴의 변화를 분석하는데 매우 유용한 방법임을 보여준다.
본 연구에서는 경산시 대중교통체계 개편 전과 후의 통행패턴을 분석하였으며, 통행패턴 변화의 통계적 검정을 위해 카이제곱($x^2$)검정과 t-검정을 실시하였다. 또한 대중교통 이용자들의 통행패턴 변화에 영향을 미치는 요인을 파악하기 위해 이항로짓모형을 추정하였으며, 개편 전 후 교통수단 선택에 영향을 미치는 요인을 비교 분석하기 위해 다항로짓모형을 추정하였다. 이들 두 로짓모형의 추정을 위해 사용된 설명변수로는 통행패턴 변화 및 대중교통체계 개편 전 후의 교통수단 선택에 영향을 미칠 것으로 예상되는 성별, 연령, 직업, 통행목적, 요금지불방법, 목적지, 통행시간의 7개 변수를 사용하였다. 이러한 분석을 통해 대중교통시설 및 환승체계 구축 등 교통정책 수립에 필요한 다양한 시사점과 본 연구의 한계를 제시하였다.
본 논문의 목적은 DSRC 기반 통행속도 이력데이터를 활용하여 IC-IC 구간 단위의 통행패턴을 도출하는 것이며, 이를 통해 방대한 이력정보 데이터의 활용도를 높이고, 단순하지만 정확성 높은 방법으로 도로의 통행패턴을 용이하게 파악할 수 있게 하는 것이다. 통행패턴 분류는 의사결정나무 기법을 적용하였고, 월 시간대 구간 단위로 분리된 통행패턴을 생성하여 시 공간이 변화되어도 이에 대응 가능하도록 하였다. 경부고속도로 서울TG~안성IC 구간을 대상으로 의사결정나무 기법을 적용한 결과, 요일 기준으로 (월)(화 수 목)(금)(토)(일) 5개 그룹으로 고정 통행패턴이 분류되었다. 분류 결과를 영동, 중부, 중부내륙 고속도로의 9개 구간에 적용하여 통계적 검증을 수행한 결과 약 93%의 적합도를 갖는 것으로 나타났다. 의사결정나무를 통한 통행패턴 오차를 개선하기 위하여 4개의 추가변수를 도입한 결과, "직전월의 소통상황"을 설명변수로 추가할 경우 통행속도 분산이 약 50% 감소함을 확인하였고, 실제 상황에 적용할 경우 소통 원활 시의 오차가 약 4% 감소되었다.
이 연구는 자동 차량위치 측정기법(Automatic Vehicle Location, AVL)을 이용해서 수집한 교통상황자료를 가지고 구간 통행시간을 산출하는 알고리즘을 개발한다. AVL기법을 이용하는 경우, 처리해야 할 자료량이 많아서 실시간에 정보를 산출하는 것이 힘들다. 따라서 이 연구는 처리해야 할 자료량을 가능한 한 줄이고 자료량이 적은 경우에도 효율적인 구간통행시간을 산출하는 알고리즘을 제시한다. 이 연구의 방법론은 크게 4가지인데, 첫째, 해석 기법, 둘째, 회귀분석, 셋째, 인공지능 및 전문가 시스템, 넷째, 통계분석이다. 이 방법론을 이용해서 세 단계 알고리즘을 개발하는데, 첫째는 실시간 분석통계 알고리즘, 둘째는 과거자료분석 알고리즘, 셋째는 자료응합 알고리즘이다. 이 알고리즘 가운데 자료융합 알고리즘 결과가 산출하고자 하는 구간 통행시간이다. 실시간 분석통계 알고리즘은 연속하는 세 개 구간의 통행 패턴을 이용해서 가운데 구간의 통행시간을 산출하는 방법을 제시한다. 또 실시간 분석통계 알고리즘으로 산출하지 못한 구간은 인접구간 상관도 정보를 이용해서 구간통행시간을 추정한다. 과거자료분석 알고리즘은 회귀분석을 이용해서 시간대별 통행시간 평균과 분산을 구하고, 이 결과를 바탕으로 인접구간 상관도 정보를 오프라인으로 구하는 알고리즘이다. 자료융합 알고리즘은 2가지 단계를 거치는데, 그것은 실시간 자료융합과 최종 자료융합이다. 실시간 자료융합은 실시간에 가까운 자료원의 실시간 분석통계 알고리즘 결과 패턴과 인접구간 상관도 정보를 이용한 구간통행시간 추정 결과를 이용해서 패턴에 따라 다른 방법으로 융합을 하는 알고리즘을 개발한다. 최종 자료융합은 실시간 자료융합 결과와 회귀분석 결과의 패턴을 이용해서 구간 통행시간을 산출한다. 이 연구를 기존 연구와 비교할 때, 세 가지 독차성이 있다. 첫째는 연속하는 세 구간 통행 패턴을 분석하였기 때문에 기존의 노드의존 방식을 탈피하였다는 점이다. 따라서 자료량이 적은 경우도 믿을만한 통행시간을 산출할 수 있다는 것이다. 둘째는 인접구간 상관도 정보를 구간통행시간 산출에 이용하였기 때문에 자료를 효율적으로 이용할 수 있다는 점이다. 셋째는 자료원 패턴을 분류하고 전문가 시스템을 이용하여 자료융합 하였기 때문에 수행속도가 빠르고, 신뢰성있는 정보를 제공한다는 점이다. 이 연구는 개발한 알고리즘 정확도를 검증하기 위해서 두 가지 검증방법을 이용하였다. 첫째는 시뮬레이션을 이용한 것이고, 둘째는 실제 주행조사 분석을 이용한 것이다. 두 가지 검증 결과는 알고리즘 정확도를 보여준다.
본 연구는 대구시 대중교통체계 개편 후 이용자 의식조사를 토대로 대중교통체계 개편 전후의 이용자 통행패턴의 변화 및 환승통행, 서비스 만족도에 대한 분석을 실시하였다. 그 결과 대중교통체계 개편으로 환승통행 수요가 증가하였으며, 특히 버스를 이용한 통행패턴에서 버스와 지하철간의 환승을 통한 통행패턴으로의 변화가 높은 것으로 나타났다. 이는 환승요금 무료할인제 실시로 환승에 대한 경제적 부담감의 감소와 버스노선체계 개편으로 대중교통이용자의 통행패턴이 다양화되었기 때문이다 환승에 대해서는 전반적으로 개선된 것으로 나타났지만, 무환승 희망비율이 높게 나타난 환승에 대해서는 여전히 많은 부담을 느끼는 것으로 나타났다
각 개인이 발생하는 통행 행태와 이들 가구 구성원간의 연관관계 및 영향에 대한 이해는 활동기반모형의 궁극적 목표라 할 수 있는 미래의 활동패턴 예측의 가장 기본이 되는 연구사항이라 할 수 있다. 일반적인 회귀 모형의 경우 개인의 활동/통행 패턴을 알아내기 위하여 모집단으로부터 수집되는 개인자료는 가구라는 부분모집단으로 세분화되어 계층적 구조(Hierarchical structure)의 성향을 고려하지 못하고 있어, 그 결과는 편이된 추정치를 낳는다. 따라서, 본 연구에서는 계층적 구조를 갖고 있는 자료를 이용하여 다수준 모형(Multi-Level Model)을 사용하여 개인의 활동/통행 패턴 영향을 규명해내고 활동/통행 패턴의 변화를 가구수준의 변동과 개인수준의 변동으로 나누어 분석하였다. 사용된 자료는 미국 Puget Sound 지역의 Transportation Panel 자료(PSTP)를 이용하였다. 분석 결과 개인의 통행사슬 발생모형에서 가구수준의 변동이 전체변동의 1/4를 차지하고 생계활동 지속시간 모형에서는 전체 변동의 1/8을 차지하는 등의 매우 큰 값을 나타내어 개인의 활동/통행 패턴 분석시 다수준 모형을 통한 분석의 필요성이 대두되었다.
본 연구에서는 1일(24시간) 단위로 표현되는 통근통행자의 통행패턴을 분석하기 위해 가정과 직장 및 기타 목적지를 선택하여 이루어지는 하루 동안의 통행패턴을 유형화하여 이들 선택대안의 선택행태를 분석하였다. 이러한 연구목적을 충족시키기 위하여 본 연구에서는 경산시와 영천시에 직장을 가진 직장인(통근통행 자)에 대하여 실시한 통행 설문조사자료를 이용하여 네스티드 로짓모형을 이용한 경험적 모형을 추정하고, 모형의 추정결과를 논의하였다. 본 연구에서는 통근통행자의 통행패턴이 단일목적 혹은 다목적 통행의 선택을 높은 단계, tour의 수를 낮은 단계의 선택으로 하는 네스티드 로짓모형에 의해 표현된다고 가정하였다. 이렇게 표현된 네스티드 로짓모형의 경험적 추정결과로부터 본 연구에서 가설화된 네스티드 로짓모형구조의 타당성을 확인할 수 있었다. 아울러 모형의 경험적 추정결과는 개인의 행태적 측면을 적절히 반영하는 것으로 확인되었다.
본 연구는 수도권 광역도시철도 이용에서의 통행 연쇄 패턴으로 구분한 이용자 집단 특성과 총 이용 빈도 및 시간대 별 이용빈도로 구분한 역 집단 특성 간의 관계를 분석함으로써 수도권 광역도시철도 역 이용의 일반 특성을 규명하였다. 이를 위해 2005년도 6월 하루 동안 수도권 광역도시철도 전체 357개 역을 이용한 274만여 명의 역 이용지를 11개 통행 연쇄 패턴으로 구분하고, 이 중 2통행 수 이하의 단순 통행 5개 패턴에 해당하는 240만여 명의 통행 자료를 분석하였다. 분석 결과 이용객 수 및 시간대 별 출발 및 도착 비율에 근거하여 4개의 역 집단 구분이 가능하였으며, 특히 역 집단 간에는 계층적 구조가 존재함을 알 수 있었다. 또한 하루 동안의 역 이용 빈도가 역 집단 별로 일관된 차이를 보이는 것은 모든 이용자 집단에 있어 동일하나, 시간대 별 이용 비율은 역 이용자의 최초 통행의 도착역이 최종 통행의 출발역과 같은가 여부, 최초 통행의 출발역이 최종 통행의 도착역과 같은가 여부 등에 따라 달라짐을 알 수 있었다.
본 연구에서는 도시 가로망에서의 구간 통행시간을 예측하기 위하여 time-frequency 분석의 일종인 웨이브렛변환과 RBF신경망 모형을 이용한 예측모형을 개발하였다. 웨이브렛 변환을 이용한 시계열 자료 분석을 통해서 통행시간에 내재되어 있는 다양한 패턴의 특징을 추출함으로써 오전/오후의 첨두현상, 신호교차로의 현시주기 등 주기적으로 발생되는 요인들에 의해서 통행시간 시계열 자료의 패턴에 나타나는 규칙성을 분석해 내었다. 분석된 패턴정보에 대한 규명은 카오스 이론을 근간으로한 시간지연좌표를 이용하여 시계열 자료의 규칙성을 시각적으로 판별하여 예측모형 구축에 활용하도록 하였다. 또, RBF신경망을 이용하여 예측범위의 공간적/시간적 확대에 따른 모형 구축에 소요되는 시간을 최소화하도록 하였으며, 시내버스 노선의 정류장간 운행시간 예측을 통해서 기존 연구에서 제기되었던 현실세계의 단순화, 다단계 예측시 정확성 등의 문제를 해결하였다. 예측실험결과 웨이브렛 변환을 데이터의 전처리 과정에 삽입하여 링크 통행시간의 패턴정보 예측에 활용할 경우, 기존의 예측모형에 비해서 훨씬 정확한 예측이 가능한 것으로 나타났으며, RBF 신경망은 짧은 학습시간에도 불구하고 역전파 신경망보다 우수한 예측력을 갖고 있는 것으로 밝혀졌다.
한국교통연구원에서 2010년 가구통행실태조사 자료를 기초로 구축한 신규 KTDB 여객자료는 대도시권 모두에 대해 PA개념을 기반으로 통행생성과 통행유인의 통행발생량과 교통존 간의 통행량 자료를 처음으로 제공하였다. 따라서, 신규 KTDB를 활용한 장래 수요예측의 분석방법은 변화된 자료형태에 적합한 PA개념의 분석방법이 적용되어야 한다. 본 연구에서는 교통정책 분석 시 반영하게 되는 장래 개발사업에 대한 통행발생량 예측과 통행분포패턴 예측 분석에 있어 PA개념의 분석 절차를 정형화할 수 있는 방법을 명확하게 제시하고, 또한 과거의 OD기반의 분석방법이 적용될 경우 그 분석결과가 PA기반의 분석방법의 결과와 다르게 나올 수 있음을 단순 예제를 통해 증명하였다. 이와 같은 분석결과의 차이는 교통정책의 의사결정에 있어 신규 KTDB 여객자료를 활용하면서 과거의 OD기반의 분석방법이 적용될 경우 정책결정에 왜곡을 가져올 수 있음을 의미하는 것이므로, 신규 자료에 대해 적합한 분석방법이 적용되어야 함을 본 연구는 강조하였다. 또한 본 연구는 신규 KTDB 여객자료에 PA기반 분석방법이 올바로 응용 적용될 수 있도록 조속히 실무분석가들에게 분석방법 지침과 기술 보급이 필요함을 주장하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.