KIPS Transactions on Computer and Communication Systems
/
v.9
no.12
/
pp.291-306
/
2020
Nowadays, Data-Network-AI (DNA)-based intelligent services and applications have become a reality to provide a new dimension of services that improve the quality of life and productivity of businesses. Artificial intelligence (AI) can enhance the value of IoT data (data collected by IoT devices). The internet of things (IoT) promotes the learning and intelligence capability of AI. To extract insights from massive volume IoT data in real-time using deep learning, processing capability needs to happen in the IoT end devices where data is generated. However, deep learning requires a significant number of computational resources that may not be available at the IoT end devices. Such problems have been addressed by transporting bulks of data from the IoT end devices to the cloud datacenters for processing. But transferring IoT big data to the cloud incurs prohibitively high transmission delay and privacy issues which are a major concern. Edge computing, where distributed computing nodes are placed close to the IoT end devices, is a viable solution to meet the high computation and low-latency requirements and to preserve the privacy of users. This paper provides a comprehensive review of the current state of leveraging deep learning within edge computing to unleash the potential of IoT big data generated from IoT end devices. We believe that the revision will have a contribution to the development of DNA-based intelligent services and applications. It describes the different distributed training and inference architectures of deep learning models across multiple nodes of the edge computing platform. It also provides the different privacy-preserving approaches of deep learning on the edge computing environment and the various application domains where deep learning on the network edge can be useful. Finally, it discusses open issues and challenges leveraging deep learning within edge computing.
Park, DaeKyeong;Ryu, KyungJoon;Shin, DongIl;Shin, DongKyoo;Park, JeongChan;Kim, JinGoog
KIPS Transactions on Software and Data Engineering
/
v.10
no.3
/
pp.91-98
/
2021
Today's information and communication technology is rapidly developing, the security of IT infrastructure is becoming more important, and at the same time, cyber attacks of various forms are becoming more advanced and sophisticated like intelligent persistent attacks (Advanced Persistent Threat). Early defense or prediction of increasingly sophisticated cyber attacks is extremely important, and in many cases, the analysis of network-based intrusion detection systems (NIDS) related data alone cannot prevent rapidly changing cyber attacks. Therefore, we are currently using data generated by intrusion detection systems to protect against cyber attacks described above through Host-based Intrusion Detection System (HIDS) data analysis. In this paper, we conducted a comparative study on machine learning algorithms using LID-DS (Leipzig Intrusion Detection-Data Set) host-based intrusion detection data including thread information, metadata, and buffer data missing from previously used data sets. The algorithms used were Decision Tree, Naive Bayes, MLP (Multi-Layer Perceptron), Logistic Regression, LSTM (Long Short-Term Memory model), and RNN (Recurrent Neural Network). Accuracy, accuracy, recall, F1-Score indicators and error rates were measured for evaluation. As a result, the LSTM algorithm had the highest accuracy.
With the advancement of wireless technology and the rapid growth of the infrastructure of mobile communication technology, systems applying AI-based platforms are drawing attention from users. In particular, the system that understands users' tastes and interests and recommends preferred items is applied to advanced e-commerce customized services and smart homes. However, there is a problem that these recommendation systems are difficult to reflect in real time the preferences of various users for tastes and interests. In this research, we propose a Fuzzy-AHP-based movies recommendation system using the Gated Recurrent Unit (GRU) language model to address a problem. In this system, we apply Fuzzy-AHP to reflect users' tastes or interests in real time. We also apply GRU language model-based models to analyze the public interest and the content of the film to recommend movies similar to the user's preferred factors. To validate the performance of this recommendation system, we measured the suitability of the learning model using scraping data used in the learning module, and measured the rate of learning performance by comparing the Long Short-Term Memory (LSTM) language model with the learning time per epoch. The results show that the average cross-validation index of the learning model in this work is suitable at 94.8% and that the learning performance rate outperforms the LSTM language model.
KSCE Journal of Civil and Environmental Engineering Research
/
v.42
no.1
/
pp.67-74
/
2022
In recent, the number of real-time traffic information sources and providers has increased as increasing smartphone users and intelligent transportation system facilities installed at roadways including vehicle detection system (VDS), dedicated short-ranged communications (DSRC), and global positioning system (GPS) probe vehicle. The accuracy of such traffic information would vary with these heterogeneous information sources or spatiotemporal traffic conditions. Therefore, the purpose of this study is to propose an empirical strategy of heterogeneous information fusion to improve the accuracy of real-time traffic information. To carry out this purpose, travel speed data collection based on the floating car technique was conducted on 227 freeway links (or 892.2 km long) and 2,074 national highway links (or 937.0 km long). The average travel speed for 5 probe vehicles on a specific time period and a link was used as a ground truth measure to evaluate the accuracy of real-time heterogeneous traffic information for that time period and that link. From the statistical tests, it was found that the proposed fusion strategy improves the accuracy of real-time traffic information.
Kim, Tagyoung;Kim, Ho Seon;Kang, Kyeong-Pyo;Kim, Seoung Bum
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.21
no.5
/
pp.28-41
/
2022
A road system with CV(Connected Vehicle)s, which is often referred to as a cooperative intelligent transportation system (C-ITS), provides various road information to drivers using an in-vehicle warning system. Road environments with CVs induce drivers to reduce their speed or change lanes to avoid potential risks downstream. Such avoidance maneuvers can be considered to improve driving behaviors from a traffic safety point of view. Thus, empirically evaluating how a given in-vehicle warning information affects driving behaviors, and monitoring of the correlation between them are essential tasks for traffic operators. To quantitatively evaluate the effect of in-vehicle warning information, this study develops a method to calculate compliance rate of drivers where two groups of speed profile before and after road information is provided are compared. In addition, conventional indexes (e.g., jerk and acceleration noise) to measure comfort of passengers are examined. Empirical tests are conducted by using PVD (Probe Vehicle Data) and DTG (Digital Tacho Graph) data to verify the individual effects of warning information based on C-ITS constructed in Seoul metropolitan area in South Korea. The results in this study shows that drivers tend to decelerate their speed as a response to the in-vehicle warning information. Meanwhile, the in-vehicle warning information helps drivers to improve the safety and comport of passengers.
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.453-453
/
2021
도시지역 비점오염원관리, 물순환 회복, 침투 및 증발산량 증가, 열섬현상 저감을 위한 주요한 방안으로 저영향개발(low impact development, LID)과 그린인프라 기법의 적용되고 있다. LID 시설은 소규모 분산형 시설로써 넓은 지역에 많고 다양한 시설들이 적용되어 시설의 개수가 많으며, 수질 및 토양 내 기성제품에 대한 센서들의 가격은 고가로 형성되어 있어 기기의 경제성 및 유지관리 등 적용하는데 제한적이다. 따라서 과거 모니터링 자료를 기반으로 오염물질들과의 상관성 분석을 통하여 계측이 어려운 항목들을 계측가능한 항목들로부터 예측 가능하며, 선정된 항목들에 대한 비용효율적인 센서를 개발하여 실시간 LID 모니터링이 가능한 비용효율적 모니터링을 개발하였다. 공주대학교 천안캠퍼스의 LID 시설들은 2013년에 조성되어 현재까지 시설이 운영되고 있으며, 5년이상의 과거 강우시 모니터링 자료들을 이용하여 오염물질 상관성 분석을 수행가능 하기에 대상지로 선정하였다. 오염물질 상관성 분석은 2013년부터 2017년도에 침투도랑에서 수행된 강우시 모니터링 자료를 활용하여 각 오염물질들의 상관성을 분석을 수행하였다. 침투도랑 내 유입되는 평균 유입수는 TSS 286.1±318.3 mg/L, BOD 22.6±39.5 mg/L, TN 8.96±5.85 mg/L, TP 1.01±1.11 mg/L로 나타났다. 겨울철에 비해 여름철에서의 오염물질의 유입농도가 높은 것으로 분석되었다. 이는 여름철 고온건조로 인한 노면 내 차량의 주행으로 인한 중금속, 폐타이어 등과 장마철 강우 시 유출된 토사로 인하여 유입수의 농도가 높은 것으로 분석되었다. 오염물질 부하량은 TSS와 COD 0.66으로 유의성이 높은 것으로 나왔으며, COD와 TSS, TP, TN 등 유의성이 높은 것으로 분석되었다. Arduino와 Raspberry PI를 활용하여 저비용 센서와 LTE 모뎀통신과 데이터 베이스 연결하여 개발된 프로그램을 통해서 무선으로 LID 시설에 대한 모니터링을 침투화분2와 식생체류지에 조성하였다. 전력공급이 어려운 식생체류지의 경우 태양열(Solar system) 시스템과 보조 전력 배터리를 조성하여 장마철이나 장기적인 악천후로 인한 전력을 생산하지 못할 경우 보조전력배터리에서 전력을 제공하여 지속적인 모니터링이 이루어지도록 설계하였다. 토양함수량, 토양온도와 Conductivity 등 3종류의 센서를 적용하였으며, 프로그램은 현재 2단계를 통한 2차수정을 통하여 프로그램을 구축하였다. 오차, 오작동, 계측값에 대한 검·보정 작업이 필요하다. 또한 대기자료의 구축을 통해 보다 토양과 LID 시설에 대한 영향분석이 필요한 것으로 사료된다.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.23
no.2
/
pp.119-131
/
2024
Understanding accurate traffic performance is crucial for ensuring efficient highway operation and providing a sustainable mobility environment. On the other hand, an immediate and precise estimation of highway traffic performance faces challenges because of infrastructure and technological constraints, data processing complexities, and limitations in using integrated big data. This paper introduces a framework for estimating traffic performance by analyzing real-time data sourced from toll collection systems and dedicated short-range communications used on highways. In particular, this study addresses the data errors arising from segmented information in data, influencing the individual travel trajectories of vehicles and establishing a more reliable Origin-Destination (OD) framework. The study revealed the necessity of trip linkage for accurate estimations when consecutive segments of individual vehicle travel within the OD occur within a 20-minute window. By linking these trip ODs, the daily average highway traffic performance for South Korea was estimated to be248,624 thousand vehicle kilometers per day. This value shows an increase of approximately 458 thousand vehicle kilometers per day compared to the 248,166 thousand vehicle kilometers per day reported in the highway operations manual. This outcome highlights the potential for supplementing previously omitted traffic performance data through the methodology proposed in this study.
One of the key domains within a smart tourism city, smart mobility, encompasses advanced transportation means and services rooted in Information and Communication Technology (ICT). This includes shared bicycles, scooters, car-sharing services, smart transportation infrastructure, and more, aiming to surpass limitations of conventional transport and improve the movement of people and goods. It also serves tourists as an affordable and convenient mode of transport between attractions while also enhancing the overall travel experience. This study has defined 'smart tourism mobility' as a form of mobility grounded in ICT, exhibiting exceptional connectivity, serving public interest, and serving as a mode of transport for both residents and tourists in a smart tourism city. The research aimed to outline the scope of smart tourism mobility-related industries through expert Delphi surveys and estimate their economic effects within a smart tourism city. Specifically, this study updated 2015 input-output table and made 2020 regional input-output table of Seoul adopting RAS method and location quotient method. The results showed that the about 2.8 billion KRW investment of Seoul in smart tourism mobility may create more than 4.1 billion KRW in production inducement effect which is expected to create more than 1.6 billion KRW of income-inducing effect, 3.6 billion KRW of value-added-inducing effect, and 54 employment across all industries in Seoul in 2022.
Purpose of study: This study aims to analyze the educational use of metaverses among pre-service nursing teachers at a university and explore the implications of designing and operating effective metaverse lessons. Research content and method: This study collected and analyzed data on the experiences and perceptions of 32 pre-nursing teachers enrolled in J University, a very small Christian-based university in Jeonju, Jeollabuk-do, Korea, who participated in a class using metaverses. And based on this, we analyzed the advantages, difficulties, and improvements of the class, differences from classes using Zoom, impressions of the class, and suggestions for effective classes. Conclusions and Suggestions: As a result of analyzing various aspects of perceptions and experiences of classes utilizing the metaverse, it was found that in order to conduct effective classes utilizing the metaverse, it is necessary to check the infrastructure for communication and devices before class, select a metaverse platform according to the goals and contents of the course, and build a space for educational activities. In addition, it was found that it is necessary to provide guidance on how to use the metaverse and conduct sufficient training before running classes with learner-centered teaching methods. In the future, it is expected that systematic research on the principles and teaching-learning models of classroom design using the metaverse will continue to be conducted.
Sang-Il Choi;Jung-Hun Kim;Suk-Min Kong;Yoseph Byun;Seong-Won Lee
Journal of Korean Tunnelling and Underground Space Association
/
v.26
no.5
/
pp.551-561
/
2024
Underground utility tunnels are spaces densely packed with various infrastructure facilities, such as power, telecommunications, and water supply and drainage systems, making internal environment management crucial. An investigation into accident cases and on-site demands in these tunnels revealed that while fires and floods are the most common types of incidents, the demand for real-time condensation prevention and response is frequent according to on-site managers. Condensation occurs due to the difference in humidity and temperature between the inside and outside of the tunnel. Frequent or prolonged condensation can lead to metal pipe corrosion, electrical failures, and reduced equipment lifespan. Therefore, this study developed a control algorithm and monitoring system to prevent condensation in underground utility tunnels. The proposed control algorithm estimates the likelihood of condensation in real-time based on the measured temperature and humidity and suggests appropriate responses for each stage to the managers. Finally, a practical condensation prevention monitoring system was built based on the developed algorithm, verifying the feasibility and applicability of this technology in the field.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.